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Introduction

This report documents the results and deliverables from NASA Grant NAG-l-1324,

which began September 1, 1991 and ended December 31, 1994. The technical monitors were

James Reeder and Buddy Poe. The research results have been well documented in journal articles

and conference proceedings papers. Part I includes copies of these publications. In order to give a

better overall view of the project, Part I begins with a summary of the primary conclusions and

accomplishments. Specialized analysis software was developed as part of this project. Part II doc-

uments the use of this software. Part II includes user's manuals and a description of the files on

the media provided with this report.

It should be noted that although the primary funding for this project was provided by

NASA Langley Research Center, there was also support from two other related projects. One

project "Analysis of New Composite Architectures" was funded by NASA Lewis Research Cen-
ter under NASA Grant NAG3-1270. Dr. Chris Chamis was the technical monitor. The other

project "Thermomechanical Analysis of Carbon-Carbon Composites" was funded by AFOSR

under AFOSR Grant F49620-93-1-0471. Dr. Walter Jones was the technical monitor. The integra-

tion of the efforts in these projects expedited the research in all three projects.



Part I

Results and Publications

Summary of Conclusions and Accomplishments

The objective of this project was to develop an analysis for predicting the failure of woven

composites and to use the analysis to enhance understanding of their mechanical behavior, espe-

cially the failure process. Woven composites present a formidable analytical challenge. The com-

plex architecture makes routine application of finite element analysis impractical. Accordingly, a

considerable part of this effort concentrated on developing novel analytical methods. In particu-

lar, special finite elements were developed which account for microstructure within a single ele-

ment and global/local analysis methods were developed and evaluated. Use of these analyses

indicated that the behavior of woven composites is complex, but that much can be learned using

these numerical tools on even moderate size workstations. Listed below are the major accom-

plishments and observations from this study. Details can be found in individual papers, which are
included herein.

* For small waviness the engineering moduli can be estimated quite well using rule of
mixtures.

* The degree of waviness affects not only the nominal stress level at which damage ini-

tiates, but also the type of type of damage. For in-plane extension in the zero degree direction, the

initial failure was in the zero degree tow for small waviness and between mats for large waviness.

It should be noted that only mechanical loads were considered. Thermal loads should be included

in a future study.

* Finite thickness (which results in free surface effects) affects both the moduli and stress

distributions. The free surface reduced the moduli. The stress distribution within a unit cell near a

free surface was much different than that for a cell in the interior. The free surface effects only

extended about half a unit cell into the interior (through the thickness) of a specimen. For thin

composites or if failure initiates near the surface, this free surface effect should be considered

when predicting performance.

* The free surface response was essentially independent of total specimen thickness.

* Single- and multi-field macro elements were developed for 2D and 3D analysis. These

elements were very effective in predicting the effect of microstructure on global response. They

were significantly more accurate than the use of homogenized engineering properties and were
able to account for free surface effects.

* Two global/local techniques were developed and evaluated. One was based on exact

compatibility of displacements between the global and local models. The other approximated the

global solution using a few fundamental stress or strain modes. The magnitudes of these modes

were used to scale unit modal solutions, which were then superposed to obtain a local solution.



Thedisplacementcompatibilitymethodwasquiteaccurateexceptneartheglobal/localboundary,
wheresevereerrorsoccurred.The modal techniquerequiredmoreeffort to implement,but the
errorswererelativelysmall,evenneartheglobal/localboundary.

* Severeconcentrationof the throughthicknessnormal stressoccursin symmetrically
stackedplain weavecomposites.This is dueto thecouplingbetweenextensionandflexurefor a
wavy fiber tow. Shifting of one matrelativeto theotherbeforecuringso thatthe stackingis no
longersymmetricdrasticallyreducesthis stressconcentration.

* A first orderprogressivefailure analysiswasdeveloped.Thebehaviorwasquite brittle
for in-planeextension.Also, theultimatestrengthfor a compositewith a wavinessratio of 1/3
waslessthanhalf of thatfor onewith awavinessratio of 1/6.

* Softwarewasdevelopedwhichmakesit relativelyeasyto analyzeplainweavecompos-
ites of arbitrary wavinesssubjectedto macroscopicallyconstantstress.Only a few parameters
mustbe specifiedto generatea finite elementmodelandthe requiredperiodicboundarycondi-
tions. Becauseboundaryconditionswere derivedfor a 1/32unit cell model,only modestcom-
puterresourcesarerequiredfor moduli andelasticstressdistributions.

* Pre- and post-processingsoftwarewas developedfor visualizing deformedmodels,
stressdistributions,andfailurezones.

* Theglobal stiffnessmatrix is very sparsefor largethree-dimensionalmodels. It is not
unusualfor lessthanten percentof theprofile to benon-zero. For this reasonseveraliterative
solverswereevaluated.( Iterativesolverscanexploit sparsenessmuchbetterthandirect solvers.)
For the largestmodelsstudiedthusfar,which hadabout10000dof, Choleskydecompositionis
fasterbut requiresconsiderablymorememory.Thework on iterativesolverswill besummarized
in athesisto becompletedusingfunding from the AerospaceEngineeringDepartmentat Texas
A&M. This thesiswill beprovidedto NASA uponcompletion.

In addition to theresearchresultsandthe softwaredeveloped,this grantprovidedpartialor full
funding for severalstudents,whicharelisted below.Thethesisanddissertationfor thetwo stu-
dentswho havealreadygraduatedweredeliveredearlierto thetechnicalmonitor.

KyeongsikWoo
Degree:PhD
Dateof graduation:August1993
Title of dissertation:"StressandFailureAnalysisof Textile Composites"

GopalKondagunta
Degree:MS
Dateof graduation:August1993
Title of thesis:"Two DimensionalFiniteElementAnalysisof Homogenizationand

Failurein PlainWeaveTextileComposites"



KanthikannanSrirengen
Degree:PhD
Dateof graduation:Not graduatedyet
Title of dissertation:

HongbingWang
Degree:MS
Dateof graduation:Not graduatedyet
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COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, Vol. 9, 745-756 (1993)

APPLICATION OF ITERATIVE GLOBAL/LOCAL FINITE-

ELEMENT ANALYSIS. PART 1: LINEAR ANALYSIS

JOHN D. WHITCOMB AND KYEONGSIK WOO

Aerospace Engineering Department, Texas A&M University, College Station, TX 77843, U.S.A.

SUMMARY

Iterative global/local finite-element stress analysis was used to perform linear analysis of two
configurations with local damage. One was a tubular joint with local debonding; the other was a fibre
matrix unit cell with debonding along part of the interface. The global/local procedure was shown to be
both accurate and efficient for both configurations.

INTRODUCTION

In spite of the advances in computer technology, there is still a need for more computationally
efficient methods for performing stress analysis. One approach which is receiving increasing

attention is global]local finite-element analysis. Such analyses use a coarse global model to
obtain appropriate boundary conditions for a local region where there is a complicated stress

field due to geometry or material property changes. Such analyses can take a variety of forms.

References 1-3 discuss some of the possibilities. The form described herein uses two distinct

meshes (one global and one local), but retains the same level of accuracy as one would obtain

if one was to use a single refined global mesh. The accuracy is retained by using an iterative

procedure to enforce equilibrium and displacement compatibility between the global and local
regions. This procedure was described earlier in Reference 4 and is similar to the procedure

in Reference 5. Although the method was developed from a different prospective, the iterative

global[local technique is closely related to the multigrid and domain decomposition
formulations in References 6-8. In Reference 4 the procedure was tested using simple

configurations. The procedure performed very well for those tests. However, the procedure

needs to be evaluated for complex stress analysis problems.

This paper describes the application of the iterative global/local procedure for two
problems: debond growth in an adhesively bonded tubular joint and a fibre]matrix unit cell.

The tubular joint was studied for tension and flexure loads. The unit cell was subjected to

tension load. In the following Sections the theory will be discussed first. Then the

configurations will be described. Finally a few results will be discussed which illustrate the

performance of the global/local procedure. To simplify the discussion, only linear analysis will
be discussed in this paper. In Part 2 of this paper the method will be extended to geometrically

non-linear analysis.

ANALYSIS

The following subsections describe the basic theory, the configurations studied, the finite-

element models and the material properties.

0748-8025]93]090745-12511.00
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Theory

The basic theory for linear global/local analysis was described in Reference 4. The procedure

will be described herein in a more general form which is also applicable to geometric or
material non-linear problems. However, only linear examples will be presented in this paper.

As mentioned earlier, this technique is closely related to multigrid and domain decomposition

methods. Concomitantly, the purpose of this section is to briefly describe the theoretical

aspects of the particular analyses performed and to offer a different perspective on the method.
The following discussion assumes that a direct equation solver is being used.

The finite-element equilibria equations can be expressed as 9

where au = stress tensor

e/i = strain tensor

q_ = nodal displacements
F= = nodal forces

V= volume.

I aeqvOiJ-_q dV-F_ =0
(1)

Repeated subscripts indicate summation. Equation (1) is valid for both linear and non-linear

configurations. This equation expresses equilibrium between internally generated and

externally applied forces. It is not convenient to model complex local behaviour in a large

global finite-element mesh. The traditional engineering approach is to solve the global problem

without including local details. Displacements or forces from the global analysis are used as
boundary conditions for a separate detailed analysis of the local, complicated regions. This is

shown schematically in Figure 1 as the downward portion of the iterative loop. The problem

with this engineering approach is that the refined local model is not in equilibrium with the

global model. As described in the following, iteration can be used to enforce equilibrium

between the global and local models.

The lack of equilibrium between a coarse global model and a refined local model is due to

the difference in stiffness of the global and local models in the local region. In fact, modified

material properties could be used in the coarse mesh which would result in the same response
as the refined mesh. Of course, it is generally not practical to determine these modified

properties a priori. However, this interpretation of the global/local problem shows that it can

be approached in the same manner as the analysis of structures with local yielding or locking

material response. In particular, the global/local method used herein is essentially a non-linear
elasticity analysis implemented using the initial stress method, 10 which is really just a modified

Newton-Raphson algorithm. Whether a material is softening or locking with increasing strain

will affect the strategy used to ensure convergence. Because of the similarity between

global/local and non-linear elasticity analysis, similar convergence problems can be expected.
More importantly, many of the techniques developed to ensure convergence for non-linear

elasticity are likely be useful in linear global/local analysis.

Obviously, refining a mesh locally by just subdividing existing elements decreases the
stiffness of the local region for some modes of deformation. However, in some cases, refining

a mesh might include addition of structural details or local redesign which stiffen the region.

Hence, in practice, the local mesh can be more or less stiff than the global mesh.

Treating the linear global/local problem as a non-linear elasticity problem, one can proceed
as follows. First, the global problem is solved. This involves solving the following equations
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Solve global

problem

Local forces

Solve local

problem

/Region A

Global/local

boundary

displacements

,J
Region C

Figure 1. Schematic diagram of iterative global/local analysis

for q_:

I Oeijoij d V- F,_ (2)
A+B

where regions A and B constitute the entire global mesh (see Figure 1). The displacements q_

from the global analysis are used as boundary conditions for the local mesh (region C). Next,

global residuals are calculated assuming that region B is replaced by region C in the global

model. This is analogous to using a linear stiffness matrix in solving for displacements in a

plasticity analysis, but then using updated constitutive properties to determine residuals. The

residuals are given by

I aeo'_,_ = aq d V- F_ (3)
A +C _q_
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A modified Newton-Raphson procedure was used to eliminate residuals. The equations to

be solved to determine the corrections to the global displacements are

0't',_

Oqa Aq0 = - q'_ (4)

where O_t',_/Oqt3is approximated by O/OqI3[_A+B crij Oeij[Oq_ d V], which is just the global mesh
stiffness matrix. For linear and some material non-linear problems, the global stiffness matrix

needs to be assembled and factored only once, regardless of in what place(s) a local analysis

is to be performed.
The next step is to update the global displacements based on solution of equation (4). The

updated boundary displacements are then imposed on the local model and the loop continues

until the residuals are sufficiently small. It is, of course, possible to use over- and under-

relaxation when updating the global displacements. The effect of using variable relaxation on

convergence will be discussed. The relaxation strategy used is described in Reference 1 I.

Configurations

This Section wilt describe the configurations analysed, the meshes used and the material

properties.

Radius = 224.2 rnm

Bonded Tubes Traditional Axisymmetric Finite
Element Analysis

Figure 2. Traditional finite-element modelling for bonded tubes with two debonds
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Figure 2(a) shows two composite tubes which are bonded together. This type of joint is

referred to as a single lap joint. A portion of the tubes has been removed so that the joint
cross-section is visible. The tubes were loaded under axial tension or flexure. The tubes are

assumed to have short axisymmetric debonds at both ends of the bondline. The debond length

is 15.2 mm. Because of the symmetry, an axisymmetric analysis was used for tension loads.

Fully three-dimensional analysis was used for flexural loads.
Figure 2(b) shows a traditional axisymmetric finite-element model, including a close-up of

the debond front. The very thin elements along the bondline model the adhesive layer, which

is 0.15 mm thick. Figure 3(a) shows the global/local finite-element meshes for the same

configuration. The global mesh is like the mesh in Figure 2(a) except that there is no extra

refinement around the debonds. The global mesh does contain crude approximations of the
debonds. The local mesh has the same refinement as the crack tip region in Figure 2(a). Eight-

node elements were used for the meshes in Figures 2(a) and 3(a). The element stiffness

coefficients and forces were evaluated using 3 × 3 Gaussian integration. Even though a 2 x 2

integration scheme was used successfully using traditional meshes, the global/local procedure

was not always convergent when such was used. No convergence problems were encountered

using 3 x 3 integration.
Figure 3(b) shows the global/local finite-element model for the analysis of flexure loads.

Twenty-node elements with 3 × 3 x 3 integration were used. Two versions of the global mesh
were used in the flexure analysis. One version included a debond and the other did not. This

was to test the performance when the local refinement included major geometry changes (not

just a better assumed solution). The models appear identical before deformation since the only

difference is the duplicate nodes along the debond faces.

Figure 4(a) shows the second configuration analysed: a unit cell containing a single circular
fibre surrounded by an epoxy matrix. The fibre volume ratio for this model is 0.6. Plane strain

analyses were performed for this configuration. Because of symmetry only one fourth of the
unit cell was studied. Two global meshes were used. One has no debond and the other does.

However, until the meshes are deformed, they appear identical to that shown in Figure 4(b).

Figure 4(c) shows the mesh for the case of local fibre[matrix debonding. The debond extends

over a 6.4 ° segment of the interface. Four-node elements were used for the unit cell analyses.
The element stiffness coefficients and forces were calculated using 2 x 2 integration.

Table I gives the number of nodes, number of elements and storage requirements for the

stiffness matrix for each of the models. The storage requirements are based on profile storage.

The Table shows that the memory requirements were less for the global[local analysis than for

the traditional analysis. There was a large difference for the single lap tubular joint for both

the axisymmetric and the three-dimensional models, but not for the unit cell analysis. In

general, it is expected that the savings will increase as the complexity of the problem increases.
The tubes were assumed to be graphite/epoxy with the fibres arranged to give a quasi-

isotropic laminate. Lamina properties from Reference 12 were used. The properties for the

layers were averaged to give properties for a 'homogeneous transversely isotropic' laminate.

This procedure is discussed in Reference 9. The resulting axisymmetric material properties are:

E,,= 1.27 x 10 x° Pa, Eoo = 5-26 x 10 l° Pa, Ezz = 5-26 x 101° Pa

uro = 0.33, UOz= 0-305, Uz,= 0.33

G,o = 4-48 X 109 Pa, Goz = 2-01 x 10 z° Pa, Gz, = 4-48 x 109 Pa
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Radius

" _'-'--"-"'-'_ cal Mesh_for Zoorrung

Global nly One Debond " in

(a)

Global Mesh

Cross-section of Local Mesh

(b)

Figure 3. Global/local meshes for tubular joint: (a) axisymmetric global/local meshes; (b) 3D global/local meshes
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J1

y

(b) Global RE. Model

(a) Unit Cell

Crack Tip

Debond

(c) Local EE. Model

with Damage

Figure 4. Global/local analysis of fibre/matrix unit cell

Table I. Number of nodes (NN), number of elements (NE)

and profile for finite-element models

NN NE Profile

Axisymmetric single lap model:
Traditional 701 204 99111

Global with debond 397 108 30563

Local (single debond) 191 56 11281

3D single lap model:
Traditional 2723 464 3890946

Global with debond 1499 208 1251921

Global without debond 1447 208 831651
Local 1511 288 1802028

Unit Cell:

Traditional 243 212 17701

Global with debond 166 140 8498

Global without debond 165 140 7871

Local 91 76 6421
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The unit celt model used the following material properties (Reference 13):
Fibre:

E=4.137xI0 l_ Pa, v=0-2, G= 1.724x 10 z_ Pa

Matrix:

E= 3.447 x 109 Pa, v=0-34, G= 1.276 x 10 9 Pa

RESULTS AND DISCUSSION

The results for the single lap tubular joint are discussed first, then the unit cell results are
discussed.

Figure 5 shows the error in the mode I and mode II (G_ and GII) strain energy release rates
against the iteration number for tension load. Herein, the error is defined to be the extent to

25

20 -

15 -

.o

I0 -

5 -

' Debond B

Mode II Debond A

i

\

0
I I I I I

0 1 2 3 4 5 6

Number of Iterations

Figure 5. Convergence history of strain energy release rates for a single lap joint under axisymrnetric tension. Results
shown are for debond B
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which the global/local analysis does not match the results from a traditional finite-element

analysis. The percentage error was calculated as

(Gtraditional- Gglobal/local)[Gtraditional X 100

No over- or under-relaxation was used for the results in Figure 5. The Figure shows that the

convergence is very rapid. The error is negligible after only three iterations. Also, note that

if a non-iterative global/local solution had been used (which corresponds to iteration

count = 1), the error would have been quite large.

Figure 6 shows the error in G_ and Gn against iteration number for flexure loads. When the

global mesh contains a debond the error is very small even for iteration 1. This indicates that

the global mesh had a close approximation of the local region stiffness. If the global mesh does

not contain a debond, the convergence is still quite rapid using variable relaxation. The effect

of fixed as against variable relaxation is discussed later for the fibre-matrix unit cell analysis.

trl

E

70

60 -

50 -

40 -

i

30 - Mode II

20 -

10 -

k

0 t

0 1

Mode I

without global debond

with global debond

Mode I & II

2 3 4 5 6 7

Number of Iterations

Figure 6. Convergence history of strain energy release rates for a single lap joint under flexure. Global meshes with

and without a debond were used
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1 --

IJe_

0.75

0,5 --

0.25 -

with global debond

.... _ - - -K.

\
without global debond

0
I I I I I I

0 1 2 3 4 5 6 7

Number of Iterations

Figure 7. Normalized cumulative CPU time for a single lap joint under flexure. Two global meshes were used. One
global mesh modelled the debond; the other did not

Figure 7 shows the normalized cumulative CPU time required against iteration number for

global models with and without a debond. The CPU time for a converged solution is about
the same for both models and is less than for a traditional analysis. The global model without

a debond is actually more efficient in this case than the one with a debond since the memory
requirements are less.

The next configuration analysed was a fibre-matrix unit cell. A global stress analysis was

performed first. This was done using the global mesh shown in Figure 4(b). Based on the stress
analysis results, one can determine the most critical region where preferential interfacial failure

might initiate. Now suppose one needs to know the strain energy release rate that would be

present if a debond did form. In the spirit of global/local analysis, one would assume some

initial debond length, develop a local mesh and proceed with the iterative analysis without

changing the global mesh. That is, the global mesh would not contain a debond, but the local
mesh would. Note that at this point the already decomposed global stiffness matrix is available
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from the global stress analysis. Since the cracked local mesh has a very different stiffness from

that of the corresponding region in the global mesh, the approximation of _o,[_q_ by the

global stiffness matrix is not very accurate. As shown in Figure 8, this poor approximation
results in very slow convergence if variable relaxation is not used. When variable relaxation

is used, the convergence rate becomes much better. Figure 8 also shows results for the case in

which the global mesh has a debond. Of course, including a debond in the global mesh requires
either anticipation of where a debond will form or modification of the global mesh after

performing the initial analysis. Obviously, one would like to avoid both scenarios. However,
the memory requirements are less for a global/local analysis than for a traditional analysis, and

hence it might be preferred even when the region to be examined in detail is known a priori.
As was the case for the bonded joint problem, the convergence is extremely fast, even without

variable relaxation, when the global mesh has a crude approximation of a debond.

L_

e_

6O

40

20

Global Mesh without Debond

Mode I, Fixed Relaxation
....... Mode II, Fixed Ralaxation

Mode I, Variable Relaxation

[] IgEI_ [] Mode II, Variable Relaxation

Global Mesh with Debond

Mode I, Fixed Relaxation

._,-_-_¢rCr Mode II, Fixed Relaxation

0 10 20 30 40 50

Number of Iterations

Figure 8. Convergence of strain energy release rates for debond growth along fibre/matrix interfaces (e = 0.005)
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CONCLUSIONS

Iterative global/local finite-element stress analysis was used to analyse two configurations: a

bonded tubular joint and a fibre/matrix unit cell. In both cases there was localized damage.

The global/local procedure converged quickly, even without variable relaxation, if the global

mesh contained at least a crude approximation of the damage. When the global mesh did not

contain a crude approximation of the damage, variable relaxation was effective in ensuring

reasonable convergence rates.

Computer memory requirements were less for the global/local analyses than for traditional

finite-element analyses. Hence, the global/local procedure might be preferable even when the

regions requiring refined analysis are known a priori.
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APPLICATION OF ITERATIVE GLOBAL/LOCAL

FINITE-ELEMENT ANALYSIS.

PART 2: GEOMETRICALLY NON-LINEAR ANALYSIS

JOHN D. WHITCOMB AND KYEONGSIK WOO

Aerospace Engineering Department, Texas A&M University, College Station, TX 77843-3141, U.S.A.

SUMMARY

A geometrically non-linear global/local technique was developed and tested. This technique uses separate
global and local finite-element models. Iteration is used to enforce equilibrium between the global and
local models. The results of this initial study suggest that the technique can be used to reduce both

computer memory and CPU requirements.

INTRODUCTION

The term 'global/local analysis' is used to describe many different strategies. Part 1 of this

paper described the application of one of these strategies for linear analysis. This second part

of the paper extends the procedure to geometrically non-linear analysis. Although much of the
formulation in Part 1 is applicable herein, there are significant differences. Accordingly, a brief

but complete description of the theory is given, then a few illustrative examples are discussed.

THEORY

The governing geometrically non-linear equilibrium equations can be expressed as

I a_.ija_j dV- F,_ =0 (1)
VOL

where q_ are the unknown nodal displacements, F_ are the applied forces and repeated
subscripts indicate summation. This equation expresses equilibrium between the internally

generated and externally applied forces. A total Lagrangian formulation was used, so the

strain-displacement relations are given by 1

The stresses are

1 [3ui auj Our cgur'_ (2)

au = Cu_tekt (3)

There are various procedures for solving the non-linear equations in (1). A modified

Newton-Raphson procedure coupled with global/local iteration was used herein.
Figure 1 is a schematic diagram of the global/local procedure for the analysis of a butt strap

joint with a debond. The global mesh has two labelled regions. Region A includes the entire

0748-8025/93[090757-10510.00
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>
Local Boundary Forces

Figure 1. Non-linear iterative global/local strategy

mesh except for the shaded region. Region B includes just the shaded region. Region B includes

the area around the debonds. The global mesh in region B is too coarse for accurate analysis.
The debond might not even be modelled. The local mesh (region C) is a refined idealization
of the shaded region.

The first step in the iterative solution is to solve the global model regions A + B. The non-
linear equations to be solved are

I _l?.ijaij d V- F_ = 0 (4)
A+B _qa

Note that the integration is over the entire global model. Boundary displacements from the

shaded region are imposed on the local model, which is then solved. The governing non-linear
equations are

I .. Oei---dd V- F_ = 0 (5)c a,j 3q.

At this point the local solution is the usual engineering global/local solution. However,
because of the difference in the mesh refinement between regions B and C, the local model

(region C) is not in equilibrium with region A of the global model. Hence, the solution is not

the same as if the local model was actually part of the global model. Satisfaction of equilibrium
requirements can be expressed as

"L_= ou Oejj d V + ou d V- F_ = 0 (6)
A Oq,_ C

If fully converged solutions were obtained for the global and local models during this first

global[local iteration, significant residuals _ would exist only for the q_ along the boundary
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of the shade region. If only partially converged solutions were obtained, residuals would exist

throughout both the global and local models.

Equations (6) will not be satisfied on the first global/local iteration. Also, these equations
cannot be solved directly even for linear problems because the equations for regions A and C

are not directly coupled. However a modified Newton-Raphson procedure can he used to

iteratively solve equations (6). In the unmodified Newton-Raphson procedure corrections to

the current estimates of the displacements are obtained by solving

-- Aq_ = - _ (7)
aqa

The updated displacements are then q_+Aq_. For the unmodified Newton-Raphson

procedure we require the tangential stiffness matrix Ka-

= aij _q_ d (8)Oq_ Oq_ A+C

TO form Kx requires that regions A and C be parts of a single mesh. In the modified

Newton-Raphson procedure we use an approximate KT given by

(KT)c_/_= 0--_ [fA+ B Oij _OEiJdv 1 (9)

This is simply the KT for the global mesh.

The next step is to update the global model displacements based on an approximate solution

of equation (7). The modifier 'approximate' is used because O_]Oqe is only approximated. The
updated boundary displacements are then imposed on the local model and the loop continues

until the residuals are sufficiently small. To speed convergence variable relaxation (i.e. scaling
of Aq_) is used. 2

Even for traditional non-linear finite-element analyses there are many ways to 'fine-tune' the

solution slrategy to minimize the computational burden. Variable relaxation was mentioned
earlier. Another is to adjust the frequency of updating the tangential stiffness matrix. In

global[local analysis there are more opportunities (and responsibilities) for tuning the strategy.
A few different strategies were examined in this study, but determining the optimum strategy

is beyond the scope of this paper.

The strategies examined in this paper can be described with the help of Figure 1. The analysis

begins with solving the global model. Since the global model is non-linear there are three
possibilities for the 'solution': (1) a linear solution, (2) an approximate solution obtained after

limited iteration and (3) a converged non-linear solution. If there is significant non-linearity,

use of a linear solution is probably a bad strategy. It is not so clear as to how tightly converged

the global solution must be, since further iterations will occur later in the global[local iterative
loop. Next the local model is solved. Again, the 'solution' could be one of the three

possibilities discussed above. Regardless of the local solution, the local model boundary forces
FLB°UND are used in calculating residuals in the global model. Currently, only a non-iterative

incremental solution is performed for the global model. Also, in the current implementation
KT for the global model is never updated after determining the initial global solution. The

implicit assumption is that changes in the global displacements are fairly small after the initial

global solution. This assumption makes it particularly unwise to use a linear initial global

solution in the current implementation. Herein, at least a few iterations were used to obtain

a reasonable global solution before proceeding to the global[local iterations. This permitted
the solution of highly non-linear problems.
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TableI

Iterationstrategyno. 1" 2 3 4 5 6 7

Initialsolution:
Global C C C C B B B
Local C C C B C C B

Global/local iteration:
Global C A A A A A A
Local C C A A C A A

*Not implemented.

Seven possible strategies are listed in the Table I. All but strategy no. I was implemented.
The letters A, B and C refer to the choices in Figure 1.

CONFIGURATIONS

This Section describes the three configurations which were studied: a plate butt strap joint
under tension, a radially compressed laminated plate with a post-buckled sublaminate, and a

tubular butt strap joint under fexure.

The global and local meshes for the plate butt trap joint are shown in Figure 1. Two

304"8 mm-long composite plates are bonded together. The overlap length is 152.4 mm. The

adherend thickness is 15.2 mm. The joint is assumed to have short through-the-width debonds

at the centre and at the ends of the bondline. The behond length is 7-6 mm. Both the global
and local models include the debond. Because of the symmetry, only half of the joint was

modelled. Eight-node isoparametric elements were used.

Figure 2 shows the axisymmetric global and local meshes of the post-buckled laminated plate

under radial compression. The plate is 100 mm in diameter and 4 mm thick. The sublaminate
thickness is one tenth of the plate thickness and the delamination diameter is 30 mm. Both the

global and local models include the delamination. The thicker line in the local mesh indicates

the debond. Eight-node isoparametric elements were used.

Figure 3 shows the global and local meshes of the tubular butt strap joint under flexural
loads. The internal radius of the tubes is 213-4 mm. The cross-section dimensions are the same

Debond (b) Local mesh

T
1-------_ R

(a) Global mesh

Figure 2. Global and local meshes for radially compressed laminated plate (deformed global mesh is shown)
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Ca)

(b)

Debonds

/

(c)

Figure 3. Global and local meshes for butt strap tubular joint: (a) global mesh; (b) local mesh; (c) cross-sections of
local mesh

as those of the plate butt strap joint described above. The local mesh has two axisymmetric

debonds. The location and length of the debond are identical to those of the plate joint. The

debonds are not modelled in the global mesh. Twenty-node elements were used.

Table II gives the number of nodes, number of elements, and storage requirements for the

stiffness matrix for each of the models. The storage requirements are based on profile storage.

Table II

NN NE Profile

Plate butt strap model:
(2D)

Traditional 189 50 9795

Global 85 18 2355

Local 150 40 5610

Post-buckled laminate model:

(axisymmetric)
Traditional 749 220 83375

Global 389 108 28855

Local 429 128 34743

Tubular butt strap model:

(3D)
Traditional 2672 488 3831555

Global 1448 232 1290909

Local 1798 320 1276710
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The reduced storage requirements (relative to traditional finite-element analysis) are much

more significant for the three-dimensional model than for the much simpler two-dimensional
and axisymmetric models.

The material was assumed to be graphite/epoxy with the fibres arranged to give a quasi-

isotropic laminate. Lamina properties from Reference 3 were used. The properties for the

layers were averaged to give properties for a 'homogeneous transversely isotropic' laminate.

The procedure used to obtain the averaged properties is discusses in Reference 4. The resulting
material properties are:

El1 = 52.6 GPa, E22 = 52-6 GPa, E33 = 12-7 GPa

g12 = 0" 305, //2 3 = 0- 33, FI3 = 0" 33

GI2 = 20- 1 GPa, G23 = 4.48 GPa, G13 = 4-48 GPa

RESULTS AND DISCUSSION

The behaviour of the iterative global/local method was evaluated in terms of stability and

accuracy, rate of convergence of force residuals to zero, convergence of strain energy release
rates, and computer resources.

Figures 4(a) and (b) show the results for the plate butt strap joint in Figure 1. Figure 4(a)
shows the error in calculated mode II strain energy release rate at the centre debond against

global/local iteration number for six variations of the non-linear global/local strategy. Note
that the traditional engineering solution (iteration 0 for strategies 2 and 3) is very poor. The

errors decrease rapidly to very close to zero for four of the six strategies. Strategies 4 and 7
performed poorly. This is due to the non-iterative local solution. Strategies 3 and 6 result in

very small errors, but the failure to iterate for the local model forces after the first global/local
iteration loop results in a 'steady-state' error of about 0.4 per cent after about four

global/local iterations.

Figure 4(b) shows the decrease in maximum residual forces _max against global/local
iteration number. Comparison of Figures 4(a) and (b) shows that _bmaxdoes not give a good

indication of the error in Gn. For example, after about four global/local iterations strategy

2 gives essentially zero error in Gn (Figure 4(a)). Figure 4(b) shows the _bm_ for strategy 2 at
four iterations is about 0.378 MPa. Strategy 7 has a smaller _bm_ of 0"234 MPa after six

iterations, but the error in Gn is about 15 per cent.

The next configuration studied was a relatively thick laminate with a post-buckled

delaminated region. Figure 5 shows the convergence history for the Mode I strain energy

release rate. Figure 5(a) shows definite convergence for strategies 2 and 3. For the other

strategies, which used limited iteration, convergence did not always occur. Figure 5(a) shows

that strategies 4 and 6 with one iteration did not converge. (These curves are labelled 4(1) etc.)
Strategy 5 with one iteration also did not converge. These results are not shown because they

fall outside the range of the graph. However, as the maximum iteration number increased to

five (indicated as 5(5) etc.), convergence was achieved. Figure 5(b) shows the normalized CPU

time against iteration number. The time for the initial global solution plus the global/local

iterations is divided by the time for a traditional global analysis with local refinement. The

larger CPU times per iteration for strategies 2 and 5 are due mainly to the full convergence
requirement in the local solution. Strategies 5 and 6 with carefully chosen tolerances or

maximum iteration limit resulted in convergence with less CPU time. Strategies 2 and 3 always

produced converged results, but took more CPU time than the other global/local strategies.
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If one considers the initial global solution a sunk cost for both global[local and traditional

analyses, all the strategies in Figure 5(b) are more efficient than traditional analysis.

The final configuration is a butt strap tubular joint subjected to flexure. Figure 6(a) shows
the error in maximum GI and GII against global[local iteration number. The solid line is for

strategy 3. The engineering solution has a very large error (iteration 0). The error decreases

rapidly, but appears to converge to a slightly incorrect answer. This error is believed to be a

result of not iterating to obtain a converged local solution after the initial global/local solution.

This hypothesis was tested by switching from strategy 3 to 2 for iteration 7 and then switching
back to strategy 3. The results are indicated by the broken lines. The error in GII is now

reduced to essentially zero after a few additional iterations. The error in G_ is reduced, but

not to zero. These results suggest that, if a very tight tolerance is to be met, an adaptive

global/local strategy is needed. Development of an adaptive strategy was beyond the scope of

this initial study.

Figure 6(b) shows the normalized elapsed CPU time against global/local iteration number

for strategy 3. The time for the initial global solution plus the global/local iterations is divided

by the time for a traditional global analysis with local refinement. The efficiency of the

global[local procedure depends on the required accuracy. After 12 global[local iterations the
error is fairly small. The total CPU time is 25 per cent less than for a traditional analysis. If

one considers the cost for the initial global solution to be a start-up cost for both a global/local

or a traditional analysis, then the CPU for the global/local solution is more than 50 per cent
less for the global/local than for the traditional solution. Also, the memory requirements are

less for a global/local solution.

CONCLUSIONS

A global[local strategy was developed for analysis of geometrically non-linear structures.

Several variations of the basic global/local strategy were presented. As expected, some of the

variations were better than others in terms of both stability and efficiency. Results from this

initial study showed that the procedure can be very accurate and can result in significantly
reduced computer memory and CPU requirements. Further testing is needed to refine the

global/local strategy and to determine the class of problems (e.g. size of the model and severity

of the non-linearity) for which this algorithm is most suited.
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ABSTRACT: The analysis of textile composites is complicated by the complex micro-

structure. It is not practical to account for this microstructure directly using traditional
finite elements. A new type of finite element was developed to efficiently account for
microstructure within a single element. These new elements, which are referred to herein
as macro elements, performed ,,veil in initial tests.

INTRODUCTION

wo OF THE major obstacles to widespread use of laminated composites in

high performance primary structures are the low strengths normal to the

lamina and the labor intensive fabrication processes currently used. There has

been considerable research aimed at developing tougher resin systems to enhance

the through the thickness strength. Also, robotics are being developed to reduce

the labor costs. Of course, there remains the question of whether laminated con-

struction is the optimal form.

Several alternatives which are receiving attention are weaving, braiding, stitch-
ing, knitting, and combinations of these. These various forms are referred to as

textile composites. Approximate analyses have been developed for predicting

moduli, but these analyses are far too crude to predict details of the local stress

field [1-3]. Very little detailed three-dimensional analysis has been performed.

These studies, which used 3-D finite elements [4-8], required tedious modeling,

many simplifying assumptions about the material microstructure, and only con-

sidered very simple loading. The computational challenge is obvious when one

examines the schematic of a simple plain weave in Figure 1. The resin pockets are

removed to show the fiber tow architecture. This tiny piece of material, which is

only about .28 mm thick and about 1.4 mm wide, is in fact, a fairly complicated

*Associate Professor.
**Graduate Student.
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Figure 1. Schematic of plain weave composite.

structure. If four mats are stacked to obtain a thicker composite (still only about

1.1 mm thick), it is obvious that the number of elements required becomes intol-

erable very quickly even for a coarse mesh (see Figure 2). A variationally consis-

tent and organizationally (and computationally) tolerable procedure is needed for

analyzing textile composites.

The objective of this paper is to describe a displacement based finite element

which accounts for the spatial variation of material properties within a single ele-

ment. This is in contrast to the usual choices of either adding more elements to

account for microstructure or using averaged material properties within each ele-

ment. The performance of this element is very similar to that in Reference [9],

but the formulation is totally different. The formulation of this new element will

be discussed first. Then several configurations will be analyzed to evaulate the

performance. For simplicity in the discussion, only two-dimensional configura-

tions will be considered. However, the approach is general and can be extended

easily to three dimensions.

Figure 2. Schematic of symmetrically stacked plain weave composite.
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THEORY

To simplify the discussion, a rectangular element with multiple layers of

materials will be discussed first. Such an element might be used where the tows

are straight or for ordinary laminated composites when there are too many

lamina to model each individually. Then, microstructure of arbitrary shape will
be considered.

Consider the four node rectangular element in Figure 3 which contains three

lamina of composite material. To facilitate the following discussion, the element

will be referred to as a macro element and the subregions (lamina) will be refer-

red to as subelements. The displacement field within the macro element is
assumed to take the form

u (x, y) = N_ (x, y)u,

v(x, y) -- N_(x, y)v,

(1)

where N_ (x, y) are interpolation functions and u_ and v, are macro element nodal

displacements. In Equation (1) and subsequent equations Cartesian index notation

is used. In particular, a repeated subscript indicates summation. In Equation (1)

the summation is for the range i - 1 to 4 since there are four interpolation func-

tions for a four node element. The assumed displacement field is referred to

herein as single field because a single approximation is used through the entire

macro element. In contrast, a multi-field approximation would use approxima-

tions which are defined within a single subelement. The stiffness matrix can be

calculated using the familiar formula

B,,_ D,,, B,jdxdy (2)

where B,j and D,., are the strain-displacement and constitutive matrices, respec-

tively. They are defined by the following equations

(3)
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where qj -- list of the element nodal displacements.

The complication that we have is that the constitutive matrix D,,, is now a dis-

continuous function of position. However, because of the simple geometry, one

can perform the required integrations in closed form for each subelement and add

the contributions. The details were described in Reference [7] for a four node ele-

ment. It was shown in Reference [10] that the closed form expressions for the K u

are quite simple for a four node element.

Rectangular macro elements with rectangular subelements cannot accurately

model wavy regions like that shown in Figure 4. For such microstructure one

needs to use distorted subelements. In the more general case, such as when the

interface between woven mats is not straight, the macro element will also be dis-

totted. Figure 5 shows a distorted quadrilateral macro element with distorted

subelements. The large numbers (1-4) are the macro element node numbers. The

smaller numbers are the subelement node and element numbers. For simplicity

the resin pockets are not modeled.

To obtain a single field approximation, the subelement degrees of freedom

(dof) must be expressed in terms of the macro element dof. There are several

ways in which we can proceed. Two procedures will be discussed herein. Before

lO

3
_15

4

3
2

4

Figure 5. Distorted quadrilateral macro element with distorted subelements.
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proceeding it should bc pointed out thai in gcncral tim single Iicid character is

only exactly satisfied at the subelemcnl nodes. The [irsl proccdurc is Io considcr

the subelcmcnt mesh to be an ordinary Iinitc element mesh. The only difference

is that afler the subelement stiffness matrix and equivalent nodal load vector arc

determined, they are not immedialely assembled, but arc first lransformed. This

transformation can be expressed in matrix notation as

K,:i = Y.,,. K.".° To i

7sF, = T.,,[ .,
(4)

where Tim is defined by q; = Ti,.q,. and

q," = nodal displacements for subelement

qm = nodal displacements for macro element

K_. = stiffness matrix for subelement

K,-i = subelement contribution to stiffness matrix for macro element

The transformation matrix 7",,. is calculated using the macro element interpola-

tion functions (which are defined in terms of local coordinates _- and r/) evaluated

at the subelement nodes. For example, for a four-node macro element and a
three-node subelement the transformation is

ul

vl
.

u_

v_
I ,

t,_ It2 tl3 t14]

tzt /zz I23 t24 /
/

13t t32 t33 t34J

where tlj = [N i(fi,ni) 0 ]0 Nj(_,,n,)

I

U_

12t

U4

124

(5)

Another possibility involves transforming the interpolation functions. This alter-

native is much more efficient unless there are a very large number of integration

points. This procedure will be illustrated by considering the interpolation for the

displacement in the x-direction, u. A few more definitions are required before
proceeding.

u = macro element displacement in 2v-direction

u, = macro element nodal displacements in x-direction

u" = subelement displacement in x-direction

u_ - subelement nodal displacements in x-direction

N, = interpolation functions for macro element

N,'. = interpolation functions for subelement

Within a subelement the x-displacement is approximated as
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iv" = N:u;: (6)

But the subclemcnt nodal displaccnmnts arc slavcs to the macro elemcnt nodal

displacements, as described earlier. This can bc expressed as

.: = (7)

where _,, rl, = coordinates of subelement node i. Combining Equations (6) and

(7) gives

u-" = N:Nj(f,,rl,)u (8)

or

u s = N_Tuuj (9)

where T u = Nj(_,,r/i). Note that this transformation matrix T u is similar to that

in Equation (4). The approximation for u can also be expressed in terms of

modified interpolation functions,

u'= Nju (10)

D $

where Nj = N,T u.

Since the range of i in Equation (10) is 1 -- (number of nodes in the subele-

ment) and the range of j is 1 -- (number of nodes in the macro element), the

"modified" interpolation functions can be different in number than the original

functions. These modified interpolation functions are used when calculating the

subelement stiffness matrices. Recall that the B matrix contains derivatives of the

interpolation functions Nj. This presents no problem since the T u contains only

constants. For example,

O_. ON:

Ox - Ox Tu (1 I)

These modified interpolation functions are used in evaluating the terms related

to the displacement interpolation. The unmodified interpolation functions are

used to determine the determinant of the Jacobian for use in n-rapping the differ-

ential area d fdn from the subelement local coordinate system to a global coor-

dinate system. Since the subelement displacements are slaved to the macro ele-

ment displacements, there is considerable freedom in defining the subelements.

For example, there is no need to prevent "'dangling" nodes like that shown in

Figure 5. In fact, one can even define the stiffness matrix for a macro element to

be a summation of some very unlikely looking subelements. This is shown sche-

matically in Figure 6. This is probably of little practical utility for two-
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Figure 6. Alternate calculation of macro element stiffness matrix for two-dimensional con-
figuration (Dr.. = constitutive coefficients).

dimensional models, but for three-dimensional models this represents a major
simplification.

The single field approximation gives very poor results for some configurations.

For example, if the lamina in Figure 3 have large differences in Er, it is very

difficult to approximate the stiffness in the y-direction using a single field approx-

imation. This is because the single field assumption results in continuity of
strains, which causes a discontinuity of stresses which should be continuous at

the lamina interfaces. A numerical example of this poor performance will be

given in the "Results and Discussion" section. However, as will be illustrated

later, there are realistic configurations with significant inhomogeneity for which
a single field approximation performs well. Also, the macro elements described

herein cannot be evaluated using the usual mesh refinement convergence meth-

ods. As the mesh becomes more refined, the inhomogeneity within an element

disappears and the macro element becomes an ordinary element.

RESULTS AND DISCUSSION

Results for two basic configurations will be presented. The first is a one-

dimensional bimaterial rod and the second is a 2D idealization of a woven textile.

The material properties for the woven textile were assumed to be

E,, = 100GPa E22 = 10GPa Ess = 10GPa

_',2 = 0.35 _'_3 = 0.35 t,23 = 0.3

G_2 = 5 GPa G,s = 5 GPa G2s = 3.845 GPa

These material properties are meant to represent those for a transversely iso-

tropic tow. They do not correspond to any particular material system. Two-

dimensional material properties were obtained by imposing plane strain condi-

tions. The material properties were transformed to account for the inclination of
the fiber bundle.
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Figure 7. Error in calculated stiffness using single field approximation.

The bimaterial rod (shown schematically in Figure 7) was used to evaluate the

accuracy of a single field approximation when two materials are loaded in series.

The axial displacement was assumed to vary as E7.=,a,x i, where n equals the

order of the polynomial. Figure 7 shows the error in predicted stiffness verus the

ratio En/Ea. As expected, the error increases with the ratio Eb/Ea. Perhaps sur-

prising is the inability of an eighth order polynomial to adequately predict the re-

Effective
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Figure 8. Extensional modulus versus wavh_ess.



sl_)nsc when K,,/li,, is larger than about 2. Obviously, the single lieid approxima-

tion is not very useful when two very dilferent materials are loaded in series.

However, most realistic contigurations involving dissimilar materials have load

paths which are a combination of series and parallel. The example of primary

concern in this paper is a textile composite, which will be discussed next.

Two-dimensional idealiz_ttions of textile comixJsites were analyzed using single

tield macro elements. The tow path was assumed to be sinusoidal. The thickness

of the tow, b/2, was kept constant along the path. Waviness ratios b/a (sec sketch

in Figure 8) were varied from .083 to .333. It should be noted that a woven com-

posite is inherently three-dimensional. There is no typical cross section. Con-

comitantly, results from any two-dimensional textile model must be used with

caution. Consequently, the results presented should only be interpreted as an

evaluation of the effectiveness of the macro elements for handling microstructure.

Figure 8 shows the variation of extensional stiffness with waviness. Two symmet-

rically stacked mats were considered. Only one mat was modeled. Symmetry

conditions were imposed on the lower surface of the mat. Results were obtained

using 60 eight-node traditional finite elements (reference solution) and 2 eight-

node macro elements. The macro elements predict the stiffness variation quite

well, except for very large waviness ratios.

Figure 9 shows undeformed and deformed finite element meshes for a single

textile mat using 8-node traditional and 12-node macro elements. This configura-

tion is different from that in Figure 8, which had symmetry on the lower surface

of the mat. The absence of symmetry constraints results in large bending defor-

mation. The deformed meshes are also shown overlaid to compare the predicted

shapes. The macro elements predict the deformed shape very well.

Figures 8 and 9 showed the good performance of the macro element for pre-

dicting global response. This does not imply that stresses or strains within the el-

ement can be calculated accurately. In fact, the errors can be quite large. Figures

10 and 11 show the variations of ox along the lower boundary of the axial tow for

two symmetrically stacked mats. Results are included for both traditional and

macroelement analyses. The sample points are labeled in the figures as points

1-6. Figure 10 shows ox for a waviness ratio of .333. The actual o, variations, i.e.,

that calculated using conventional finite elements) is not complicated, but the

single-field approximation is quite inaccurate. A waviness ratio of .333 is fairly

large. For a smaller waviness ratio of .166 (Figure 11) the accuracy of the single-

Eight node traditional elements

Figure 9.

Twelve node macro elements

I I I 1 I

Overlaid Meshes

Comparison of deformed traditional and macro element meshes.
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licld approximation is mucil better, ltowcver, tile usc of single-field finitc ele-

ments to calculate local stresses and slntins is not recommended. Much better es-

timatcs Ibr local stresses and strains can be obtained using a global/local strategy.

Siaglc-ficld macro elements can be very useful for the global analysis. A refined

traditional finilc clement analysis can then be used for tile local analysis.

CONCLUSIONS

A new type of finite clement was developed for analysis of textile composites.

This new clement (referred to herein as a macro element) accounts for tile spatial

variation of material properties within a single element. Tests of tile macro ele-

ments showed good performance for modeling the global deformation behavior

of textile composites. Because of the single field assumption, tile stresses

calculated inside the macro element are not accurate. To obtain these stresses a

global/local strategy should be used in which macro elements are used for the

global analysis and conventional finite elements are used for tile local analysis.

Although only two-dimensional elements were evaluated, the formulation is

valid for three dimensions. However, there are challenges in 3D modeling, which

are not so apparent or do not exist for 2D models. For example, in 3D one could

imagine mats which are oriented at other than 0 ° or 90 ° relative to the macro ele-

ment axes. Such an off-axis mat is much more difficult to model, particularly if

it is combined with mats with other orientations. There is obviously still much

work required to develop a general textile composite analysis.
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SUMMARY

For some heterogeneous materials, it is not practical to model the microstructure directly using traditional
finite elements. Furthermore, it is not always accurate to use homogenized properties. Macro elements
have been developed which permit microstructure within a single element. These macro elements
performed well in initial tests.

INTRODUCTION

In traditional 2D and 3D finite-element analysis, the material properties are assumed to be

constant or at least to vary smoothly within a single element. This is valid for most engineering

applications because the microstructural scale (e.g. grain size in a metal) is very small

compared with the element size. However, some materials exhibit a very coarse

'microstructure', such as laminated or textile composites. Figure 1 shows a schematic diagram

of a cross-section of a textile composite. Owing to the complicated geometry, textile composite

structures are very difficult to analyse. To use the traditional finite-element method to solve

this kind of problem, finite elements have to be defined such that the material properties vary
smoothly in each finite element. This results in a very large number of elements. For laminated

composites, the geometry is simpler, but if there are many laminae (for example, 50 laminae

for a 6-25 mm laminate), modelling of individual layers becomes impractical because of the

large number of elements.
Material homogenization is one way of treating inhomogeneous materials. In this procedure,

the spatially variable material properties are replaced by some 'effective' homogeneous

properties. The effectiveness of material homogenization, however, depends on the problem
to be analysed. Material homogenization theories _-3 assume that the applied loading on the

boundary of the representative volume element (RVE) is spatially homogeneous. This

assumption is good as long as the characteristic scale of the microstructure is much smaller
than that of the macrostructure. For example, volume averaging in laminated composites

works well for in-plane loads. However, it gives large errors for bending loads unless there are

many plies and the different plies are highly dispersed through the thickness. Higher-order
theories such as classical laminate theory (CLT) 4 account for the geometric details of the

microstructure for the laminated composite plates in terms of Ist and 2nd area moments of

inertia. CLT works well for in-plane and bending problems in thin laminated plates. But CLT

ignores out-of-plane strains, which is unacceptable for relatively thick plates. There are many

other ways of homogenization, but none of them are problem-independent. When there are
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938 K. WOO AND J. D. WHITCOMB

material property discontinuities, it is most accurate to model each material group discretely.
However, this approach requires large computer memory and CPU resources.

Some work has been done in dealing with specific problems to overcome this difficulty.
Steven 5 developed a quadratic triangular and a quadratic isoparametric element with an

internal interface modelled by a straight line. In his work, triangular subregions were used to

perform numerical integration. He also suggested the possibility of using a second

isoparametric mapping to simplify the integration, but he neither described any details nor

implemented the method. The concept of splitting the integration limit was also discussed by
Panda et al. 6 In his finite-element formulation for laminated plates, the integration limit

through the thickness was divided to define material properties of each individual layer. Foye 7
studied material properties of fabric-reinforced composites using subcell analysis. The unit cell
was divided into rectangular paralellepiped subcells. Since the subcell boundaries do not match

the material interfaces, averaged material properties were used in each subcell.

The present paper describes a 'macro' finite element which can account for the details of

Figure I. Schematic diagram of woven composite
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Figure 2. Typical 4-node macro element

microstructure within an element. A macroelement is defined to be an element consisting of
several subdomains. Figure 2 shows a macro element that has four subdomains. Macro

elements can have material discontinuities inside the element, but in each subdomain the

material properties are smooth functions of the spatial co-ordinates. The macro element is
identical to a traditional finite element when it has only one subdomain. When there are

material discontinuities, the subdomainss are used to define the material boundaries and to

facilitate the numerical integrations.

It should be noted that since the present study was based on a displacement formulation,

even with very high-order interpolation, significant stress errors are expected near the region

where geometric or material discontinuities occur. Local stress distributions for regions of

special interest can be achieved by global]local analysis, s- to The proposed macro elements are
best suited for use in the global analysis.

In the following Sections, the finite-element stiffness matrix formulation is explained in

detail. Then examples for several configurations are discussed to illustrate the performance of
the macro elements.

CALCULATION OF MACRO ELEMENT STIFFNESS MATRIX

This section describes the finite-element stiffness matrix formulation for a macro element for

two-dimensional elasticity analysis. The extension to three dimensions is trivial and will be

discussed briefly at the end of this Section.

In a traditional displacement-based finite-element method, the element stiffness matrix has
the form

[K] = I [B]T[D][B] dxdy (1)
fl
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where
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[D] and [B] are defined by

[o1 = [D]Ie}

{el = [B]lq]

and [q} is the nodal displacement vector. Supposing that there are material property
inhomogeneities within the integration domain 12(i.e. the [D] matrix is a piece-wise-continuous

function of spatial co-ordinates within a macro element), the macro element is divided into

subdomains. Within each subdomain, the material properties vary smoothly (see Figure 2).
Consider an element that has n subdomains 12i where

_] 12+= 12 (2)
i=1

The element stiffness matrix becomes

[X]= _ I [B]T[D]i[B]dxdy (3)
i=l _i

A robust procedure is needed to evaluate the contribution of the ith subdomain

[K]i= t [B]T[D]i[B] dxdy (4)
fli

The procedure developed herein involves the use of three co-ordinate systems. Figure 3 shows

the three co-ordinate systems. The use of three co-ordinate systems differs from conventional

finite elements, which use a global and a local co-ordinate system. (In Figure 3, these are the
(x,y) and (e, 7) systems.) The mapping of co-ordinate systems in conventional finite elements

permits integration over a simple square region even when the actual finite element is quite
distorted. If the material properties vary discontinuously within an element, subdomains must

be defined in which the material properties vary continuously. In general, these subdomains

are distorted such as the one indicated by the shaded region (ijkl) in Figure 3(a). When this

distorted subdomain is mapped into the (e, 7) co-ordinate system, it is still distorted (shaded
region in Figure 3(b)) and concomitantly the integrations would not be simple. If this

subdomain is mapped again into a third co-ordinate system (r,s), the integrations are again
quite simple. The remaining task is to describe how to perform the integrations in the (r,s)
co-ordinate system.

There are two primary concerns. The first is defining the differential element dx dy in terms
of dr ds. Figure 3 shows that

dx dy = IS [ de do

where J is the Jacobian matrix defined by

j_O(x,y)
a(e, ,7)

However,

(5)

where

de d.- IJI dr ds (6)



MACRO FINITE ELEMENT USING SUBDOMAIN INTEGRATION

3

941

4

/,I J
dxdy=lJI d_drl (b)

3

2 d_d_=_drds

S

l

dxdy=lJIIJl drds

X

(a) (c)

Figure 3. Mapping between three co-ordinate systems

Therefore, the net result is

dxdy= IS llJI drds (7)

The second concern is defining the integrand in terms of the (r,s) co-ordinates. That is,

[BIT [D]i [B] involves derivatives of the interpolation functions. These interpolation functions

are defined in terms of _ and _/, not r and s. For exam lie,

] [ cgN/
j-t a_

aN_
(8)

Note that the calculation of the derivatives involves J but not J. This is because the N_'s are

defined in terms of _ and _/ alone. It is necessary to evaluate the integrand [B] T [D] i [B] at

particular values of r and s. As part of the mapping between the (4, _7) and (r, s) co-ordinate

systems, _ and 7/are approximated as

= K[i(r, s)_i (9)
71= _[i(r,s)rli
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When performing numerical integration in the (r,s) co-ordinate systems, /_ and r/ are
determined using equation (9). These values are then used to evaluate the integrand.

With equations (4) and (7), the contribution of the ith subdomain stiffness matrix becomes

I'S'[N]i = [B] r [ D]i [B] IJ I I ,I I dr ds (10)
-1 -I

In Figure 2, both the macro element and the subdomains are quadrilaterals. This is not

necessary. The interpolation for the solution is defined in the ((, 7/) co-ordinate system. The

subdomain, which is mapped into the (r, s) system, is needed only to simplify the numerical

integrations. The type of subdomain does not affect the solution except that it should

adequately describe the geometry of the microstructure.

The extension to three dimensions is simple. The three co-ordinate systems would be

(x,y,z), Ui, '7, _) and (r,s, t). The form of equations (1)-(10) is unchanged except to account
for an additional co-ordinate direction. The contribution of the ith subdomain to the macro
element stiffness matrix would be

f' I' S' [B]T[D]i [B] IJI IJI drdsdt (I1)
[K]i = -1 -1 -1

RESULTS AND DISCUSSIONS

This section discusses the use and performance of the macro elements for two-dimensional

elasticity. Three basic configurations were studied: (1) square and distorted 4-node elements,

(2) (0190210) and (90/02190) laminated beams with end moment and shear force loadings, and

(3) a single and double plain weave textile composite under tension. Four-, 8- and 12-node

macro elements were evaluated. The following material properties were used:

Ell = 100 GPa E22 = I0 GPa E33 = 10 GPa

Pl2 = 0-35 v13 = 0"35 v23 = 0"3

GI2 = 5 GPa Gl3 = 5 GPa G23 = 3" 845 GPa

X3

T
(0,1) (1,1)

(o,o) (1,0)

(a) Square macro element

X 3
(1,1.5)

X2 (0 _ X2

(0,0) (2,0)

(b) Distorted macro element

Figure 4. Macro elements for test of mapping



MACRO FINITE ELEMENT USING SUBDOMAIN INTEGRATION 943

Two-dimensional material properties were obtained by imposing plane strain conditions. For

textile composites, the material properties were transformed to account for the inclination of

the fibre bundle.

The first use of the macro element was to demonstrate that the mapping is correct. Square

and distorted 4-node macro elements were subdivided into four subdomains (Figure 4). All

Table I. Eigenvalues against Gauss integration

points for square elements (Figure 4(a))

Eigenvalues (x 10 9)

Integration 1 × 1 2 × 2

4-node traditional:

4-node macro:

0-0300) 0-00000

0-00000 0.00000

0-00000 0.00000

0-00000 5-76923

0-00000 5.76923

7.69230 7-69230

7-69230 7.69230

19-23076 19-23076

0-00000 0-00000

0.00000 0-00000

0.00000 0-00000

4.32692 5.76923

4.32692 5-76923

7.69230 7.69230

7.69230 7-69230

19-23076 19.23076

Table II. Eigenvalues against Gauss integration points for distorted elements (Figure 4(b))

Eigenvalues ( x 109)

Integration 1 x 1 2 x 2 3 x 3 4 x 4 5x5

4-node traditional:

4-node macro:

0-00000 0.00000 0.00000 0-00000 0-00000
0-00000 0-00000 0.00000 0-00000 0-00000
0-00000 0.00000 0.00000 0-00000 0.00000

0-00000 4- 55397 4- 61494 4.61621 4.61624

0-00000 6- 19357 6-25265 6.25377 6.25379

7.18992 8- 56256 8.62312 8.62441 8.62444

7.93269 9" 38271 9" 46246 9" 46405 9" 46409

20- 57450 20- 87012 20" 87916 20- 87935 20- 87935

0.00000 0.00000 0.00000 0.000_ O.OOtX_
0.00000 0-00000 0.00000 0.00000 0.00000
0-00000 0.00000 0-00000 0.00000 0-00000

7.93509 4-61146 4.61621 4.61624 4.61624

8.59403 6- 24930 6" 25377 6.25379 6- 25379

3" 63243 8- 61957 8- 62441 8.62444 8.62444

5" 06974 9- 45776 9" 46405 9" 46409 9" 46409

20.76932 20- 87863 20.87935 20- 87935 20.87935
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four subdomains were assigned the same material properties. The macro element stiffness
matrices should be the same as that for 4-node traditional elements. Tables I and II list the

eigenvalues of the traditional and macro element stiffness matrices for different orders of

integration. For the square element shown in Figure 4(a), both traditional and macro elements

produce exactly the same results when (2 × 2) Gaussian integration is used. Note that since

there are four subdomains, the actual number of integration points for a macro element is four
times the number of subdomain integration points. For the distorted element shown in

Figure 4(b), results for the traditional finite element using (2 x 2) integration differ from the

exact solutions. Table II shows that (3 × 3) integration for the traditional element and (2 × 2)
integration for the macro element are nearly exact. As the integration points increase, both
elements converge to the same results.

Figure 5 shows the moment resultants for two laminated beams. Tip displacements were

applied to produce a maximum strain of 0-1%. Homogenized material properties were
obtained by the rule of mixtures. 4 The reference solutions are from traditional finite-element

• ...:... - _ " I )

_¢;.:,_1_'"'_"_ reference.

_1 homogenized

8-nodemacro

__I 4-nodemacro __1

o .

Moment, N-m

_%1 reference

I

,_._ '_._'._/ 8-node macro

_" _ .__"_l 4-node macro

0 4 8 12 16

Moment, N-m

(b) (90/0/0/90)(a) (0/90/90/0)

Figure 5. Moment resultants for two stacking sequences

Table III. Percentage error for moment
resultants

(0/902/0) (90/02/90)

4-node macro 2- 451 5.832
8-node macro 0-001 0.000
12-node macro - -
Homogenized 37.61 160.3
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analysis with four 8-node traditional elements. Four-node and 8-node macro elements were
evaluated. A single macro element with four subdomains (one subdomain per lamina) was
used. For the 4-node macro element, selective 'reduced' integrations 11 with 17 integration

points were performed. Results show that for both (0/902/0) and (90/02/90) stacking sequences,
one 4-node or 8-node macro element predicts the bending stiffness very well. Of course, an

8-node traditional element with the volume-averaged homogenized material properties cannot

distinguish differences in the stacking sequence. Hence, the errors are large for the volume-

averaged homogenized material model, as expected. The percentage errors are shown in
Table III. Note that accuracy depends on stacking sequence.

Figure 6 shows the tip displacement comparisons for a short (3 x l) cantilever beam for two
stacking sequences. A unit shear force was applied at the right end of the beam. Four

subdomains were used to account for the inhomogeneous material properties. Single 4-node,
8-node and 12-node macro elements were used. The reference solutions were obtained with a

refined mesh (64 eight-node elements). As expected, the traditional finite-element analysis using
the refined mesh with volume-averaged homogenized material properties does not predict the

deformation behaviour. The 8-node macro element predicted the displacements fairly well. The

12-node macro element showed excellent performance. The 4-node macro element did not

perform well. This was expected since the assumed displacement fields for the 4-node element
are too simple for this problem. Table IV shows the percent errors for each case. For all three

macro elements, the error was larger for the (90/02/90) laminates.
The 'effective' extensional modulus Ex against waviness of plain weave textile composites

was calculated using traditional and macro elements. Figure 7 shows the configuration studied:

two symmetrically stacked layers. Thick and thin lines in the upper mat indicate the macro
elements and subdomains, respectively. Only the upper mat was modelled because of

symmetry. The models have a length which is the same as the fibre bundle wavelength. For

l ....... I

Jl::lL.'ll[llhl_,l,i II I ,,, !:_ !_! _,_

--h,./'::UL,hb ::"r',,, ' I " ' :_ k_:J_:_
iI

I I

_1 reference

homogo. od
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0_2 0.'4 0'.6 x 108
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Figure 6. Tip displacements of (3 x 1) cantilever beams of two stacking sequences
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Displacement, m
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simplicity, the textile composites were assumed not to have any pure matrix regions.

Displacements were applied to produce a 0- l per cent nominal strain (e) in the x-direction.
The effective Ex was defined to be

where

<o)
gx =-

(e)

Axial force Au
(o) = , <e> = --

Area a

The waviness was defined to be w = b[a, where the centreline of the wavy fibre bundle is
assumed to have a sinusoidal shape given by

b sin (27rx'_
Y=4 \a]

Two 4-, 8- and 12-node macro elements were used. Each macro element consisted of 15

subdomains and models a half-wavelength. For the reference solution, a mesh with 60

traditional eight-node elements was used. Figure 8 shows several of the traditional finite-
element models. (The wavy fibre bundles are indicated by the shaded region.) Figure 9 shows

the effective E_ against waviness. The error increased with increased waviness. Both 8-node

and 12-node elements performed fairly well. The 4-node element was not very accurate except
for small waviness.

Table IV. Percentage error
for tip displacements

(O[90z[O) (90/02/90)

23.78 29- 45
9-873 12.87
2-857 4.777

33- 11 54.64

subdomain macro elements

/ / \......

Figure 7. Two symmetrically stacked plain weave mats
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(c)

(d)

Figure 8. Several traditional meshes: (a) bla = 0.333, (b) bla = 0- 167, (c) b/a = 0- 111, (d) bla = 0-083
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(a) Traditional mesh (b) Macro element mesh

I I I

(c) Overlaid deformed meshes

Figure 10. Deformed meshes for a single plain weave mat (120 eight-node traditional elements and 4 twelve-node
macro elements are used; waviness b[a = 0- 167; nominal strain = 0-05)

Deformed meshes for macro element and traditional models are shown in Figure 10. These

models are for a single plain weave mat (i.e. no symmetry). The Figure shows quite graphically

the effect of the microstructure on the predicted deformation of a single mat. The Figure also
shows that the macro element predicts the deformed shape very well. It should be noted that

only linear analysis was performed in the present study. The deformation shown in Figure I0
is larger than would be expected from a non-linear analysis.

CONCLUSION

A displacement-based macro element was developed to expedite elasticity analysis of
heterogeneous materials. Two-dimensional macro elements with four, eight and 12 nodes were
implemented and evaluated for several realistic configurations. Since the macro elements used

a continuous strain field approximation, it is obvious that there is violation of equilibrium at

the material interfaces and the stress distributions near the interfaces would not be very

accurate. However, the macro elements performed well in terms of global response for the

configurations considered. To obtain detailed local stress distributions, a global/local strategy
is needed. The proposed macro elements should be very useful for expediting the global
analysis.
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ABSTRACT

Traditional homogenization techniques are not useful when the microstructural scale of

a material is of the same order of magnitude as the structural scale of a component. Such is the

case for many textile composites. Since discrete modeling of the microstructure throughout a
component is prohibitively expensive, continuum finite elements are needed which account for

microstructure within a single element. This paper describes a simple substructuring technique
for formulating these special elements.

INTRODUCTION

By changing stacking sequence, fiber orientation, and materials, traditional composite
laminates can be tailored for specific applications. With the introduction of advanced textile

composites, there are even greater opportunities to tailor composite properties. Not only are

there many textile forms (eg. weaves, braids, knits, etc.), but there are many unique varieties
of each form.

Accurate predictive analyses are essential for designing high performance composites.

In contrast to traditional tape laminates, verified analyses are not in place for textiles. Figure i

illustrates the complexity of the task of developing an accurate textile analysis. The figure shows
schematics of a traditional laminate and a woven material. For the traditional laminate one can

define a unit cell of dimensions approximately .007 mm. This unit cell can be analyzed to

determine effective engineering properties for the much larger individual lamina. Then each



laminacanbe treatedasa homogeneousorthotropiclayer. For a wovencoml)ositethe unit cell
canbe larger than1,rim.For thewovencompositeonecanusehomogenizedengineeringmoduli
to describethe tow properties(a tow containson the order of 6000 filaments), but there is a
much larger microstructuralscalerelatedto the interlocVdngof the tows.

Descriptionof thematerialpropertiesfor aweaverequiresdifferent strategiesat different
microstructuralscales.Figure 2 illustratesdifferent microstructuralscales.Actually all of the
schematicswere generatedfrom the samebasicunit cell labeled"coarsemicrostructure."The
term "coarse"refers to thevery distinctphasesat this level of observation.In contrast,if avery
largenumberof unit cells areconsidered,thematerialappearsahnosthomogeneous(schematic
labeledfine microstructure).At theextremesof microstructuralscalethe choicesfor material
modelingare obvious. For coarsemicrostructurethe individual tows and matrix pocketsare
modeleddiscretely both in terms of geometryand the abrupt changesin propertiesat the
interfaces.For fine microstructureeffectivehomogenizedengineeringpropertiescanbeused.
Traditional finite elementmethodsare appropriateat these two scales.Betweenthese two
extremes(labeled"transitionalmicrostructure")traditional finite elementsarenot appropriate.
In this rangethereare too manymicrostructuralfeaturesto modelthemall discretely,but there
are too few to usehomogenizedmaterialproperties.In thetransitionalrangeof microstructure,
specialfinite elementsareneededwhich permitmaterialvariationwithin anelement.Of course,
this is routine for layeredplate andshellelements.

Recently, continuumelementshave beendeveloped for accounting for textile type
microstructurewithin a singleelement[1,2]. The elementsdescribedin thesereferencesare
basedon a singleassumeddisplacementfield throughoutthe entire element.A more general
element formulation is presentedherein that includes the single field approximationas a
degeneratecase.This moregeneralformulationis anexampleof reducedsubstructuring[3]. In
brief, the implementationbeginswith thedevelopmentof an ordinary finite meshfor the basic
textile unit celt. Theninterior degreesof freedomarestaticallycondensedout. Next thenumber
andlocationof desiredboundarydegreesof freedomareselected.Finally, theoriginal boundary
degreesof freedomareexpressedin terms of the desiredboundarydegreesof freedom.One
objectiveof this paperis to describea very simpletechniquefor calculatingthestiffnessmatrix
for a reducedsubstructure.The other objectiveis to show a few resultswhich illustrate the
effectivenessof this type of element.

In the discussionthat follows, the term "macro element"will be used to indicatean
elementwhich allows for internalmicrostructure.Accordingly, theelementsdescribedin [1,2]
are single-field macroelements.Similarly, the reducedsubstructureelementswill be referred
to a'smulti-field macroelements,sincethedisplacementfield insidethemacroelementis defined
piecewise.

THEORY FOR REDUCED SUBSTRUCTURING

In multi-field elements the internal dof are eliminated using the equivalent of static

condensation. Also, boundary degrees of freedom (dot') which are not to be part of the macro

element dof are expressed in terms of the substructure dof using multipoint constraints.



Theoretically, this is all very simple. Consider the 4-node macro element in Figure 3.

Assume the governing equations are partitioned as follows

Kar KBB F

(1)

and qA is the list of unknowns to be condensed out (see Figure 3).

Before imposing the multipoint constraints on the excess boundary dof, the reduced

stiffness matrix and load vector can be expressed as

T -1 KA BK'B8 = KaB - Ka8 Ka-4 (2)
T -1

/_B = FB - K-4a K.4a FA

This procedure often is not practical as stated because of the matrix inversion which

eliminates sparsity in KAA and the large matrix multiplications. The elimination of internal dof

can also be accomplished using Gaussian elimination if the dof to be eliminated are grouped

together at either the beginning or the end of the list of unknowns. This procedure is well

known, so it will not be discussed herein. See [4] for details. After eliminating the interior dof,

multipoint constraints can be applied to the remaining dof to eliminate unwanted boundary dof.

This can be expressed in matrix form (assuming the four node macro element in Figure 3) as

qn = Tqmacro where qmac+o=

/_ll 1

UI4 /

VI4 ]

(3)

The transformation matrix T expresses how the excess boundary dof are slaved to the

macro element dof. It should be noted that if the internal dof are also slaved to the macro

element dof (rather than statically condensed), a single-field approximation is obtained. Of

course, a formulation like that in [1] is much more efficient for single-field elements. However,

the current formulation permits great flexibility for evaluating various approximations.

It is not always efficient to order the dof such that Gaussian elimination can be used to

obtain the reduced stiffness matrix and load vector, since such ordering might result in large

bandwidths. An alternative is to use the formal definition of the stiffness coefficient Kij.

Kij = force at dof i due to unit displacement at dof j



Using this definition we would simply solve a series of problems in which one dof is set equal

to 1 and the rest of the boundary dof would be constrained to zero. The restraint forces at all

the boundary dof constitute one colunm of the reduced stiffimss matrix.

This process is repeated for each boundary dof to obtain the entire reduced stiffness

matrix. The reduced load vector is obtained by solving one additional problem in which all

boundary dof are constrained to be zero and the internal loads are applied. The negative of the

boundary restraint forces constitute the reduced load vector contribution for the internal loads.

Once the reduced set of equation is obtained, the multipoint constraints can be imposed to

eliminate unwanted boundary dof. This alternative is not new. It can be considered a numerical

application of the direct stiffness method for calculating stiffness matrices. It also may not be

very efficient when there are a large number of boundary dof to be eliminated. Consider a case

in which there are 32 boundary dof, but only 8 are to be retained in the macro element. The

procedure described above requires the solution of 32 unit displacement cases. A new procedure

is discussed next which would only require 8 unit displacement solutions.

ENHANCED DIRECT STIFFNESS METHOD

The enhanced direct stiffness method is derived starting with a consideration of the work

performed by the boundary nodal forces during deformation. To simplify the discussion only

linear configurations will be considered herein. Figure 3 show a schematic of a typical mesh for

a macro element. There are four interior nodes (nodes 1, 2, 3, 4), four boundary nodes to be

retained (nodes 11, 12, 13, 14; dof - qi), and six boundary nodes (nodes 5, 6, 7, 8, 9, 10;

dof =- q/3) which are _slaved to the q-t through multi-point_ constraints. The nodal forces

corresponding to qi and q/? are defined to be F i and F/3, respectively. For the particular mesh
in Figure 3, the range of i and 13are 1-8 and 1-12, respectively. Assuming linear elasticity, the

work performed by the boundary nodal forces is

1
w = + ,

i = 1, number of retained dof

[3 = 1, number of slaved dof

(4)

The 9/3 are slaved to the qi, which can be expressed as

q13 = Tl_/q, (_

where T/3 i = Ni(_'13, hi3) is calculated using interpolation functions for the boundary. Combining
equations 4 and 5 yields

1
w -- + (6)

It is well known that the stifflaess matrix can be expressed as [5]



02 U

m n

(7)

But U = W for linear configurations so that

x
02 W

Oq,, Oq,_
(8)

Combining eqns. 6 and 8 yields

K = 2[ Oq"

OF,, aFp OFp ]

+ c3q---..÷ Oq---£T_,, + Oq---_.Tfs" 1
(9)

From the Maxwell-Betti reciprocity theorem we -know that
OF OF

Oq,. Oq,,
. The third and fourth

terms in equation 9 are also equal for the same reason, but it is not obvious in the present form.

To make the equivalence_ more obvious, first, equate the work of the forces F/3 with that of the
equivalent forces f i in terms of the retained dof

2 _qP = _Lqi (10)

Combine equations 5 and 10 to obtain

F_Ta,qi = Siqi (11)

Equation 11 shows that the equivalent nodal forces f i are

(12)

Hence, the third and fourth terms in equation 9 become

4. 4.
+ --

aq,. Oq.

(13)



Again, using the Maxwell-Betti theorem, these two terms are equal. Therefore, equation 9 can

be expressed as

OF OL
K +

Oq,. 3q,.

(14)

The implementation of equation 14 using the direct stiffness method is as follows:

°

2.

3.

4.

5.

6.

7.

Impose a unit displacement ql-

Also impose displacements qfl, since qfl = Tfllql-

Analyze model.

Calculate restraint forces F n and Ffl.

Calculate T n = FflTfln

The sum of F n and f n = column 1 of the reduced stiffness matrix.

Repeat steps 1-6 for each qi-

CONFIGURATIONS

Plain weave composites with different waviness were analyzed. Figure 4 shows a

conventional 3D finite element model of a plain weave. It has 381 nodes and 64 quadratic

elements. The tow path was assumed to the sinusoidal. The waviness ratio is defined to be b/a,

where b = the mat thickness and a = the wavelength for the tows. The waviness ratio was

varied from .033 to .33.

This mesh was used to obtain reference solutions. It was also used to generate 20-node

single-field and multi-field macro elements. Hence, there were three models: the conventional

model shown in Figure 4, a one element mesh using a 20-node single field element, and a one

element mesh using a 20-node multi-field element. The single-field results were obtained using

the formulation in [11.

Two sets of boundary conditions were used: one for a narrow two mat composite and the

other for an infinitely repeating unit cell. The boundary conditions for the narrow two mat case

correspond to a specimen which is infinitely long in the x-direction, width "a" in the y-direction,

and thickness 2b in the z-direction. The boundary conditions were as follows.



Narrow two mat composite:

u(O,y,z) = 0

v(x,O,z) =0

w(x,y,O) = 0

= specified constant value
(15)

Infinitely repeating unit cell:

Constraints listed in equation (15) and

w(x,y, b) = constant

The material properties for the tows and resin pockets were assumed to be

Tows:

Ell = 206.9GPa E22 = 5.171GPa E33 = 5.171GPa

v12 = .25 v13 = .25 v23 = .25

G12 = 2.386GPa G13 = 2.386GPa G23 = 2.386GPa

Resin:

E -- 3.45GPa v = .35

RESULTS AND DISCUSSION

There are two aspects to the evaluation of the procedures outlined in this paper. First,

the methodology for calculating the multi-field stiffness matrix was checked. This was

accomplished by comparing the stiffness matrix with that obtained using standard Gaussian

elimination followed by application of multipoint constraints. As expected, the results agreed.

The second task is to evaluate the performance of the multifield elements for analysis of textile

composites. This second task is only partially complete. A few results are discussed in this

section which suggest that this type of element can be very useful.

Axial loading along the x-direction of a narrow strip of plain weave composite was

modeled, as described in the Configuration section. Because of the complex spatial variation of

materials properties, there is significant distortion, even under simple extension. Figure 5 shows

the distortion of the macro element mesh and the conventional mesh. The macro element predicts

the distortion quite well. ( It should be noted that the elements in Figure 5 are drawn with

straight lines joining the nodes. This is a limitation of the plotting software, not a characteristic

of tile solution.)



Figures 6 and 7 show the variation of severaleffective engineeringpropertieswith
wavinessratio for infinitely repeatingunit cells.Resultsareshownfor conventional,single-field,
and multi-field elements.Both types of macro elementspredict the trends quite well. As
expected,the performanceof the multi-field elementsis considerablybetter than that for the
single-fieldelements.The accuracyof the multi-field elementsis quite good except for very
largewavinessratios. At small wavinessratios the single-fieldmacroelementspredict the in-
planebehaviorvery well, but not theout-of-plane(ie, E z, Vxz). The single-field approximation

imposes strain continuity throughout the element, which is not correct for heterogeneous regions.

The error associated this approximation is more significant for out-of-plane properties than for

in-plane properties.

CONCLUSIONS

A simple formulation for multi-field continuum finite elements with microstructure was

developed. Initial tests showed very good performance in modeling the global response of a plain

weave composite subjected to axial extension. Much more work is needed to fully evaluate the

performance of these elements. Future work is needed ( and is planned) to evaluate the accuracy

of these elements for much more complex loadings. Also, planned is an evaluation of the

accuracy of the calculated stress fields within the elements.
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Fig. 1 Comparison of microstructural scales for traditional and textile composites.
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Figure 4 Original finite element mesh for textile composites.
(381 nodes, 64 elements)
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Abstract

Two dimensional finite elements were used to study boundary effects in plain weave

composite specimens subjected to extension, shear, and flexure loads. Effective extension, shear,

and flexural moduli were found to be quite sensitive to specimen size. For extension and flexure

loads stress distributions were affected by a free surface, but the free surface boundary effect

did not appear to propagate very far into the interior. For shear load the boundary effect

appeared to propagate much further into the interior.
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woven composites
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stress analysis

boundary effects

Introduction

Fiber tows, each consisting of thousands of individual filaments, can be woven, braided,

knitted, etc. to create complex fiber preforms. These preforms are then impregnated with a resin

and cured to make textile composites. The interlacing of the fiber bundles provides many

obstacles to damage growth. Accordingly, there is the potential for greatly improved resistance

to impact damage growth. Unfortunately, there are also negative effects due to the fiber tow

interlacing. The fiber tow curvature reduces the effective in-plane moduli. The curvature also

1 Correspondence and proofs should be send to Dr. John D. Whitcomb, Texas A&M

University, Aerospace Engineering Department, College Station TX 77843-3141; telephone
number: 409 845 4006.



inducesmany local stressconcentrationswhich can result in early diffuse damageinitiation,

particularly in the matrix. The fabricationprocessis notbenign, lZorexample,weavinginvolves

muchnmchanicalhandlingof unprotectedfibers(i.e. fiberswhich arenot embeddedin matrix).

Stitchingof textile preformsto increasedelaminationresistancehasthe sideeffectsof breaking

fibersand inducing local fiber curvature.Optimaldesignrequiresthe capability to predictboth

the positive and negativeeffects of potential textile fiber architectures. Unfortunately, the

complexfiber architectureis difficult to analyze.Accurateanalysisrequiresaccurategeometric

representationandconstituentproperties,suchasfiber and matrix propertiesand fiber volume

percentage.For textile compositesthere is particulardifficulty in determiningthe actualfiber

tow geometryand developinga three-dimensionalmodelwhich canbe analyzed.There have

only been a few attemptsat detailedthree dimensionalanalysis(eg. Refs. [1-3]). Even the

accuracy of these models for local stresscalculation is an open question becauseof the

uncertaintiesin the input data (i.e. theapproximationof tow geometryand otherproperties).

Most of the analysesto datehavebeensimilar to laminatetheory in level of approximationor

detailed two dimensional (2D) or quasi-three-dimensional(Q3D) numerical analysesof a

"representative"cross-section(eg. Refs.[4-7]). As theschematicin Figure 1 shows,thereis no

such"representative"cross-section,evenfor a plain weavecomposite.While such2D or Q3D

analysesare likely insufficient for accuratepredictionof local stressstates,they areusefulfor

obtaining insight about theeffectsof fiber tow wavinesson effective moduli and strengths.In

fact, the results in this paper,which arebasedon 2D analyses,fall into this category.

The analysisof textile compositesis in its infancyascomparedto laminatedcomposites.

Thereare manyaspectsof thebehaviorof thesematerialswhich havenot evenbeenexamined,

muchlessaccuratelydescribed.Theobjectiveof this paperis to begin to addressonequestion



aboutthebehaviorof plain weavecomposites:"flow doesthel)resenceof a boundaryaffect the

stifflmssandstressdistribution in a representativeunit cell'?"The boundarysurfacesreferredto

hereare thosepresentdueto finite thickness.Threenominallysiml)leboundaryconditionswere

consideredherein: in-t)laneextension,transverseshear,andflexure.Configurationsof different

thicknesseswere analyzed using 2D finite elements.The analyseswere performed using

conventionalelementsandmulti-field macroelements(reference8). Macroelementsaredefined

to be elementswhich contain internal microstructure.The multi-field elementsare a form of

reducedsubstructuring.The macroelementspermittedanalysisof quite large modelswithout

requiring hugeamountsof computermemoryand cpu time. Of course,a few macroelements

are not as accurateas using a huge collection of conventionalelements. Accordingly, one

additional objectiveof the paper is to evaluatethe performanceof macro elementsfor simple

configurations.

The following sectionswill beginwith a discussionof the configurationsstudied.Then

the results will be discussed.First effectiveextensional,shear, and flexural moduli will be

discussed.Then the effectsof boundariesonstressdistributionswill be discussed.

Configurations

The variousconfigurationsstudiedareall synthesizedfrom a single basic unit cell. This

unit cell will be discussed first. Then boundary conditions for infinite and finite configurations

will be discussed.

Unit Ceil

The basic unit cell is shown in Figure 2. The cell consists of tows running in the x- and

z- directions. In reality there would also be pure matrix pockets, but these were filled with z-



direction tows in the model used.(Of course,in reality thereis no typical crosssectioncithcy,

asdiscussedearlier.) The two dimensionalapproximationimplies that the x- direction tow is a

wavy "plate" and the z-direction towsare straight fiber bundles.Obviously theseare serious

approximations,so the resultspresentedare intendedto be qualitativeonly. The centerlineof

the x-direction tows follows a wavy pathdescribedby the function [tsin 7tx. FOr the results
4 a

presented herein cx= 1.5/3. The thickness of the tow as measured along a line normal to the tow

centerline was held constant. It should be noted that the unit cell selected assumes a symmetric

stacking of the woven mats. There are an infinite number of other possibilities.

Two sets of two material properties were used. They are

Set I

Set II

Ell = 100 GPa E27" = 10 GPa E-33 = 10 GPa

"12 = 0.35 _'13 = 0.35 u23 = 0.3

G12 = 5 GPa G13 = 5 GPa G23 = 3.845 GPa

Elt = 165.8 GPa Fo_2 = 11.51 GPa F_,33 = 11.51 GPa

v12 = 0.273 "13 = 0.273 /:23 = 0.33

Gl2 = 15.4 GPa Gl3 = 15.4 GPa G23 = 4.17 GPa

These properties were transformed to account for the waviness of the x-direction tow.

Plane strain conditions were imposed to obtain two dimensional properties. Two sets of

properties were used. This is admittedly not optimal. The homogenization analyses were

performed using Set I. The stress analysis results were obtained using Set II.



l'eriodic fJot_ndarv Conditions f_r lt!l_nite Configurations

Figure 2 shows a typical unit cell for symmetrically slacked mats bclk_re deformation.

If this cell is imbedded within an infinite array of identical cells and displacements or tractions

are imposed "at infinity", then every unit cell will deform identically. The periodicity of the

displacement field can be imposed on a single unit cell, thus permitting the solution for the

infinite domain. The solution for an infinite domain will be useful for comparison with finite

configurations subjected to nominally uniform extension or shear. Using the coordinate system

in Figure 2a, the periodic conditions can be expressed as

u(c_,y) = u(-o_,y) + u2 -u 1

v(oe,y) = v(-c_,y) + v 2 -v 1

u(x,/3) = u(x, -/_) + u4 - u 1

v(x,_) = v(x,-_) + v4- vl

(1)

(2)

(3)

(4)

There are no specified non-zero forces (The net forces are zero at any point inside the infinite

media.). The "load" consists of the values chosen for (u z - ut), (v z - vl), etc. These values

depend on the nominal strain state desired. (Specific values for the different states will be

discussed later in this section. Equations 1-4 impose certain constraints which are not so

obvious, but are worth mentioning, since they are exploited in the finite element analysis. These

constraints are

u3 - u4 = u2 - u 1 (5)

v3 - v2 = v4 - v 1 (6)

u3 - u2 = u4 - u 1 (7)

V3 - V4 = V2 - V1 (8)



"Fhese constraints can be obtained from equations 1-4 by substituting in specific vertex values

of x and y. For example, subslitute x=c_ into equation 3.

u(c_,/3) = t,(_,-/_) + u4 -u l

But u(oe,_) = u 3 and u(o_, -fl) = u 2. Hence, equation 3 states that u 3 - u2 = tl4 - U 1. Equations

5-8 indicate that if the nodal displacements at the four corners of the unit cell are used to

(0,) (_)(_) (;)calculate the displacement gradients, we find that -aTxo' _ o' o , and o are constant. The

subscript "0" is used to indicate that these are nominal displacement gradients. On a pointwise

basis these are certainly not constant for the obviously inhomogeneous unit cells. Equations 1-4

can now be expressed as

u(c_,y) = u (-c_,y) =.(0-/
+ _,OX)o (9)

v(oe,y) = v (-u,y) + 2u (--_xx) (I0)
0

kOy)o
(11)

v(x,g) = v(x, -/?) + 2/3 (-_) °
(12)

Because of symmetries only part of the unit cell must be modeled. Herein the quarter unit

cell shown in Figure 2(b) was modeled. If all the symmetries had been exploited, only

one-eighth of the unit cell would have to be modeled. For convenience the coordinate system

is shifted to the center in Figure 2(b).



For extensionloadingtheboundaryconditionsarequite Siml)lc.The constraintsimposed

for nonlinal o x loading are

u - ,y =0 u ,y

v(x, )
= specified conslant value

= constant, but unknown

(13)

Nominal _y loading (which was not considered herein) would be very similar.

nominal %y load the boundary conditions are

u (x, _ ) = -u (x, -_ ) = specifiedconstantvalue

For

gg

(2)v , y = -v , y = specified constant value

(#
(14)

v( =

The boundary conditions in equations 14 state that the displacements normal to an edge

are anti-symmetric (and unknown except at the vertices). The tangential displacements are

constant along an edge and are specified.

Bounda_ Conditions (or Finite Configurations

Extension, shear, and flexure loading were considered for a wide range of specimen

thickness (in the y-direction). Hence, the various meshes had different numbers of unit cells.

For extension loads the boundary conditions were like those in equation 13 if one considers



and [_ to be tile dimensions of tile entire mesh, rather than just a quarter unit cell except that tile

top surface was traction free. Hence, the normal displacement "v" was not constrained to be

constant along the top. For shear load all boundary displacements were constrained to follow the

deformation u = cy and v = cx. Consequently, the boundaries remained straight after

deformation for shear loading.

For flexure loads the top and bottom surfaces of the model were traction free. A linear

variation of normal displacements were imposed on left and right ends of the model.

Results and Discussion

There are two types of results which will be discussed. The first will illustrate the effect

of specimen thickness on effective moduli. The second will illustrate the effect of unit cell

location on stress distributions.

.E_ffec:ive Moduli

For nominally simple deformation states, the effective engineering properties are expected

to converge to constant values as the specimen thickness increases. Figure 3 shows the variation

of the normalized effective E x. Figure 3a shows the variation of the average E x with the number

of unit cells. The E x is normalized by the E x for an infinite array of unit cells modeled using

conventional finite elements.The three curves were obtained using conventional finite elements

and 8-node and 12-node multi-field macro elements. The 8-node macro element must be

inherently a little too stiff, since it converges to a value approximately one percent too large.

The 12-node macro element agrees very well with the conventional finite element results. For

8 unit cells through the thickness the effective E x is within about one percent of convergence.

This indicates that a specimen would need to be 8 unit cells thick to give an effective E x within



.j

one percent of _t very thick specimen. Eigure 3b shows tile variation of the cflcctive E× with

position for a configuration which has eight unit cells through the thicknes._. The effective E x

for each quarter unit cell was calculated based oil the strain energy in the region. This is not a

rigorous definition, but it does offer some insight. The figure shows that the boundary quarter

unit cell is about 18 percent softer than an interior quarter unit ceil. The next quarter unit cell

is about _ percent too stiff. The third quarter unit cell has almost exactly the same stiffness as

ceils which are much further from the boundary. There is an obvious boundary effect, but it dies

out very quickly.

Figure 4 shows the effect of model size on normalized effective shear modulus Gxy.

In contrast to E x, the shear modulus converges from the stiff side. This difference is a

consequence of the boundary conditions imposed. For E× there were free surfaces. The traction

free condition permitted warping deformation to occur more easily near the free surface than in

the interior, so the boundary caused softening. In contrast, all of the finite size shear specimens

had specified x- and y- displacements over the entire boundary. This fully constrained boundary

deformation resulted in larger effective Gxy for smaller specimens. Figure 4 also shows that

g-node macro elements perform poorly in shear. The 12-node macro elements perform quite

well. It is interesting to note the distribution of the strain energy in a finite size shear model.

The bar chart in Fig. 5 shows the strain energy in each quarter unit cell for a 3x3 array of unit

cells. The effect of the boundary on the strain energy distribution is obviously quite complex.

Figure 6 shows the variation of normalized flexural modulus with model size. The

flexural modulus is defined to be {flexural stiffness)/I, where 1{ = the second moment of the

area. The flexural modulus in Figure 6 is normalized by the value for a configuration which is



tencells thick. The flexural modulusconvergesmoreslowly thantheextensionalmodulus.The

12-nodemacroelementperformsvery well. The 8-nodemacroelementis a little too stiff.

Stress Distributions

Figures 7-9 illustrate the effect of a free surface on stress distributions. Distributions are

shown for extension, shear, and flexure. The stresses shown are evaluated with respect to tile

xy (global) coordinate system.

Figure 7 shows the stress distributions for extension loading for three unit cells from two

different configurations. One configuration had two unit cells through the thickness. The other

had six unit cells through the thickness. The locations of the unit cells considered are indicated

by shading in the figures. The waviness of the x-direction tow and the inhomogeneity causes a

complicated variation of all three stresses. The ax variation in the longitudinal tow is dominated

by flexure induced by tow straightening, as shown by the locations of. maximum and minimum

a x. The ay is largest where the tows contact. The axy is largest where the tow rotation is largest.

There are both striking similarities and differences in the stress distributions for the three

unit cells. Figure 7 shows that the interior and exterior unit cells have very different stress

distributions. There is .obviously a significant free surface effect. The exterior unit cells in

Figure 7 have very similar distributions for all three stress components. This suggests that for

extension load the response of the exterior unit cells is not very sensitive to the total specimen

thickness.

The interior unit cell exhibits almost the same symmetries that one would expect from

a cell embedded inside an infinite array. Also, the interior half of the exterior unit cells has

stress distributions which are very close to those for the lower half of the interior unit cell.

Apparently the free surface effect does not propagate very far into the interior.

1



Figure 8 shows the stress distributions for shear loading. ,";ingle uni! cell and 3x3 unit

cell conllgurations were studied. Only the ay and Oxy distributio_s are shown, since % was quite

small. In this case there are no free surfaces. (Displacements were specified along the entire

boundary.) As was the case for extension, the interior and exterior response is different. The

interior unit cell is located in the middle of the finite element model. Hence, the symmetries

exhibited by the interior cell do not indicate the attenuation of boundary effects. In contrast to

extension load, Figure 8 shows that for shear load the response of the boundary unit cells is very

sensitive to total specimen size. Further studies are needed to determine the boundary layer

thickness for shear loads.

Figure 9 shows stress distributions for flexure loads. Only exterior unit cells are

compared. The single unit cell model was subjected to a combination of extension and flexure

so that the loading would be comparable to the exterior unit cell of the thicker model. The

thicker model was subjected to pure flexure. Both models have free surfaces at both the top and

bottom. The maximum % does not occur at the free surface. This is because local flexure of the

wavy fiber tow as it tries to straighten attenuates the %. The top halves of the two unit cells in

Figure 9 have very similar %, O-y, and O*xydistributions. The lower halves exhibit much more

differences. This is not surprising since the lower surface of the single cell is traction free but

the lower surface of the cell from the thicker model is not. These results further indicate that

there is a free surface effect (in this case, from the lower surface of the single unit cell model),

but that the boundary layer is quite small. Finally, it should be noted that the stresses were lower

for the flexure case than for the extension case even though the maximum nominal axial strain

was .001 for both.



Conclusions

Boundaryeffects were studiedfor woven compositessu/)jectedto in-plane extension,

shear,and flexure. Effective moduli and stressdistributionswere calculatedfor configurations

ranging from very thin to very thick. Only two dimensionalmodelswere studied.Sincewoven

textiles are really threedimensional,thesetwo dimensionalresultsshouldonly be interpreted

qualitatively. Boundary effects were significant both in terms of stiffness and stresses.

A specimenthicknessof 6-8 unit cells was requiredto obtain moduli within about2% of that

for very thick specimens.For extensionand flexure loadingthe stressdistribution in exterior

unit cells werequite insensitiveto totalspecimenthickness.Thereappearedto beacharacteristic

responseof boundary cells. Also, the boundaryeffect did not propagatevery far into the

interior. The responsefor shearloadwasmorecomplexthanfor extensionand flexure.Further

work is neededto characterizeboundaryeffectsfor shearloads.
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Figure Cal}!ions

Figure 1. Variation of cross section with location.

Figure 2. Basic two-dimensional unit cell models.

Figure 3. Normalized extensional modulus E×. Eight-node traditional elements were used

for tile infinitely repeating unit cell case.

(a) Average normalized E x vs. number of unit cells through thickness.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

(b) Normalized extensional modulus vs. position in an 8-unit cell

configuration (The sketch only shows four unit cells, since the

configuration is symmetric.)

Normalized shear modulus vs. number of unit cells through the thickness of the

configuration. (The number of unit cells is the same in both the x- and y-

directions.)

Normalized strain energy distribution in 3x3 unit cell model subjected to shear

load. Strain energy in each quarter unit cell is normalized by that for an infinitely

repeating unit cell array subjected to shear.

Normalized flexural modulus vs. number of unit cells through the thickness of the

configuration. Results were normalized with the flexural modulus for a ten unit

cell model.

Stress contours for a two-dimensional model of a plain weave composite under

extension (nominal axial strain = .00l).

(a) Axial Stress

(b) Transverse Stress

(c) Shear Stress
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Figure 9.

Stresscontoursfor a two-dimensionalmodelof a plain weave composite under

shear (nominal shear strain = .001).

(a) Transverse Stress

(b) Shear Stress

Stress contours for a two-dimensional model of a plain weave composite under

bending (nominal axial strain at top surface = .001).

(a) Axial Stress

(b) Transverse Stress

(c) Shear Stress
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Figure 1 Variation of cross section with location.
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Figure 2 Basic two-dimensional unit cell models.
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were used for the infinitely repeating unit cell case.
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(i) Top unit cell of model with two

unit cells through thickness.

Stress, Pa
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(ii) Exterior unit cell of model with six

unit cells through thickness.

(iii) Interior unit cell of model with six

unit cells through thickness.

(a) Axial Stress
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Figure 7 Stress contours for a two dimensional model of a plain weave composite

under extension ( nominal axial strain = .00l).
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(i) Top unit cell of model with two

unit cells through thickness.
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(ii) Exterior unit cell of model with six

unit cells through thickness.

(iii) Interior unit cell of model with six

unit cells through thickness.
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Figure 7, Continued.



(i) Top unit cell of model with two
unit cells through thickness.
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(ii) Exterior unit cell of model with six
unit cells through thickness.

(iii) Interior unit cell of model with six
unit ceils through thickness.

(c) Shear Stress
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Figure 7, Concluded.
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(i) Single Unit Cell

(ii) Exterior. Unit Cell of a (3x3) unit cell model
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(iii) Interior Unit Cell of a (3x3) unit cell model

(a) Transverse Stress

Figure 8 Stress contours for a two dimensional model of a plain weave

composite under shear. (nominal shear strain = .001)



(i) Single Unit Cell
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(ii) Exterior Unit Cell of a (3x3) unit cell model
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(ii) Exterior Unit Cell of a (3x3) unit cell model

(a) Axial Stress

Figure 9 Stress contours for a two dimensional model of a plain weave

composite under bending. (nominal axial strain at top surface = .001)
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Abstract

Global/local analysis is essential for textile composites because of their unusually large

microstructure. Homogenized engineering properties were used in this study to obtain global

solutions. The response of a local region was approximated by several fundamental strain or

stress modes. The magnitudes of these modes, which were determined from the global solutions,

were used to scale and superpose solutions from refined analyses of the fundamental modes, thus

obtaining a refined local solution. Results from numerical experiments showed that the use of

homogenized engineering properties often results in significant errors in prediction of global

response, especially at boundaries. Also, the local predictions were very sensitive to the choice

of fundamental modes.

Introduction

Recently there has been an increased interest in textile composites because of potential

increases in damage tolerance and decreased cost relative to tape laminates. These composites

consist of a textile preform which is impregnated with resin. The interlacing used in making a

preform can be accomplished by weaving, braiding, or knitting. Figure 1 shows examples of two
weave architectures: a plain weave and a 5-harness satin weave. (The resin pockets are removed

in the figure so that the fiber tows can be seen.) Textile composites all have very large

microstructure compared to traditional tape laminates. In fact, the "microstructure" can be of

the same scale as some of the structural dimensions.

One of the techniques proposed for analyzing textile composite structures is to use

homogenized engineering material properties or some other measure of effective properties for

a global analysis. This avoids the impossible burden of modeling the microstructure discretely
in a structural model. To determine the details of the stress and strain distributions, subsequent

analyses are performed using a refined model of a representative unit cell. The boundary
conditions for these subsequent analyses are determined from the results of the global analysis.

Such analyses have been discussed previously (e.g., References 1-4). This multi-level procedure

could be considered a global/local method and will be referred to as such herein. References 1

and 3 discussed the accuracy of this procedure if one uses special elements (referred to as macro

elements) for the global analysis. However, this author is not aware of any study which

evaluated the accuracy of a global/local procedure for textile composites based on using

homogenized engineering properties for the global analysis.



Tile objective of this paper is to describe two global/local procedures which use

homogenized engineering material properties to expedite global stress analysis of textile

composites and to determine tile errors which are inherent in such analyses. One of tile key

questions is whether the use of homogenized engineering properties is adequate when the

microstructure is large. To simplify the discussion and numerical experiments, only

two-dimensional models will be examined. Admittedly, textile coml)osites are fully 3D in their

geometry, but the trends determined from 2D models are expected to be qualitatively correct.

In the following sections the theoretical basis will be described first. Then the

configurations studied will be described. Finally, tile results of the numerical experiments will
be discussed.

Theorg

This section will describe tile global/local procedures used. Figure 2 shows a schematic

of the global/local analysis procedure. In this sketch the shading identifies the region which will

be analyzed further using a local model. The region to be analyzed using a local model is shown
isolated from the rest of the global model. After completing the global analysis, the boundary

nodal displacements (ui, v) and forces (F_x, F_y)are known. This boundary information is used

to determine the appropriate loading conditions for a refined local model. There are many

possibilities for determining these boundary conditions. In this particular study the boundary

information was used to quantify the magnitudes of selected fundamental strain or stress modes.

Details of the various steps are discussed in the following subsections. First, the term

homogenized engineering properties will be defined. Then the fundamental macroscopic strain

and stress modes will be described, including an explanation of how the magnitude of the modes

were determined.

Homogenized Engineering Properties

A unit cell is the basic building block which can be used to synthesize a woven

composite. In this paper the woven mats are stacked symmetrically, so the unit cell consists of

one wavelength of two mats. Homogenized engineering properties for use in the global analysis

were determined by analyzing an infinite array of unit cells subjected to macroscopically constant

stress states. Hence, every unit cell in the array experiences the same deformation. Periodic

boundary conditions were applied to a single unit cell to make it behave as though it was

embedded within an infinite array. Details about the periodic boundary conditions can be found

in Reference 5. The homogenized engineering properties were obtained by equating energies in

the homogenized medium to that in the actual unit cell.

Fundamental Macroscopic Strain and Stress Modes

In the current study the local model consisted of a refined mesh of a unit cell. In general,

the local model could be smaller or larger. The loading for this refined unit cell was determined

from the nodal displacements (u i, vi) or forces (Fix, Fiy) in the global model at the nodes which

surround the region of interest. The local model typically has many more nodes along tile

global/local boundary than the global model. Hence, the dimensionality of the local model along

the global/local boundary must be reduced. One technique to reduce the dimensionality is to



limit the response to a few macroscot)ic strain or stress modes. In this paper the response of the

local region was characterized in terms of five strain or stress modes. These modes are:

Strain modes:

0
C x :

0

Cy ."

0

£_cy "

0

Cx.y ".

0

_'y.x :

constant macroscopic %

constant macroscopic %

constant macroscopic %r

constant gradient of macroscopic %

constant gradient of macroscopic %

Stress modes:

with respect to y

with respect to x

0
% : constant macroscopic %

0

% : constant macroscopic or
0

oxy : constant macroscopic %r
0

a_,.r : constant gradient of macroscopic % with respect to y
0

%.x : constant gradient of macroscopic % with respect to x

There are interior and exterior versions of some of these modes. There are neighboring

unit cells on all sides for interior modes and on only two sides for exterior modes. Figure 3
shows deformed finite element meshes which illustrate the five interior stress modes. The

shaded rectangles indicate the original mesh size and shape. The interior modes were used for

analyzing interior cells. A mixture of interior and exterior modes were used for analyzing

exterior cells. The mix is listed below for displacement (strain modes) and force (stress modes)

based superposition.

Strain Modes Stress Modes

Mode Version
0

e. intenor
0

% interior

o intenor
I:x,y

0

ex.r exterior

o interior
Igr .x

Mode Version

0
% exterior

0

or interior

0 interior
Oxy

0

ox.y exterior

o interior
Oy,x

Only a few exterior modes were used. This is because the free surface of the exterior cell was

a y = constant line. Some exterior modes, such as a %0 mode, do not exist for such a cell.

The technique for imposing boundary conditions for the various modes is described in

References 5 and 6. The techniques used to determine the magnitudes of the modes is discussed

in the following two sections.



Strain Mode Superposition The global/local displacement field was asst, med to be

describable by the following bi-linear approximation in x and y.

u =a +bx +cy +dxy

v=e +fx +gy+hxy

(l)

The eight constants a-h can be determined by requiring that equation 1 match the displacements

at the corner nodes of the local region. The macroscopic strain modes can be obtained by

differentiation of the equations. The equation for G_ was further simplified by evaluating it at
the unit cell centroid and taking it to be constant for the entire global/local boundary. This

E° and e0 In particular,resulted in five strain modes: e°_, E°, C°xy, _.y y.x-

G =b+dy

ey =g+hx

Exy = C +f

(2)

The coefficients b, d, g, h, and c+fare the magnitudes of the five fundamental strain modes.

Stress Mode Superposition This technique is similar to the strain mode superposition

method. In this case the nodal forces from the global analysis are used to determine the

magnitudes of five fundamental stress modes. These fundamental modes were described earlier.
This section will describe how to determine the magnitudes of these modes.

The first step is to express the tractions T, and Ty acting along the global/local boundary

in terms of the stresses.

r,=o,G+o % (3)

Ty= Oxyn x + Oyny

The relationship between these tractions and the equivalent nodal forces for a single

element can be derived using the principle of virtual work. The result is

(4)

where

= 1, number of boundary nodes

N_ = interpolation functions

In this paper the local region is rectangular and aligned with the global xy axes so dS is

either dx or dy. The total nodal forces for each node along the entire boundary are obtained by



summingthe contributions from eachelement.Next the averagestressesfor the entire local
regionare assumedto begiven by

% = a +by

o =c+dx (5)
Y

O =C
O

These expressions for stresses are used in equations 3 and 4 to determine the equivalent

nodal loads. Since there are many more known nodal forces (and hence more equations) than

unknown coefficients (a-e), a least squares procedure is used to solve for the unknowns.

Once the coefficients are determined, they are used to scale and superpose the

fundamental stress modes described earlier.

Configurations

A very stubby beam was subjected to three types of loading: constant moment, distributed
transverse shear at the end, and distributed transverse loading along the lower surface. More

precisely, the conditions were: (see Figure 4)

Constant moment:

u (0,0) = v(O,O) = 0

(-4.5,y) = -.01

(4.5,y) = .01

Transverse end load:

u (O,y) = v(O,y) = 0

Ty (4.5,y) = constant

Distributed lateral load:

u (0,y) = v(0,y) = 0

ry(x,-3) = constant

The beam consisted of 3x3 array of unit cells. The ratio of wavelength to mat thickness

gives a measure of the waviness of the fiber tows. In this study this ratio (_,[h) was 1/3.

The following material properties were assumed:

Fiber tow [Ref. 6] Matrix pockets Homogenized properties

E x = 206.900 GPa E x = 3.45 GPa E, = 36.494 GPa

Ey = 5.171 GPa Ey = 3.45 GPa Ey = 5.225 GPa

E z = 5.171 GPa E z = 3.45 GPa E z = 36.494 GPa

vx,: = 0.25 v o = 0.35 v o = 1.078

v_ = 0.25 vrz = 0.35 v>._ = 0.154

v =0.25 v =0.35 vzx =0-154

Gxy = 2.386 GPa G o = 1.28 GPa G = 3.145 GPa

G_ = 2.386 GPa G = 1.28 GPa Gn = 3.145 GPa

G=, = 2.386 GPa Gv, = 1.28 GPa Gv, = 2.000 GPa

Figure 4 shows typical meshes which were used in this study. The reference mesh used

5041 nodes and 1728 bi-quadratic elements to model nine unit cells. The homogenized property
mesh used 217 nodes and 36 bi-cubic elements. The refined local mesh had 593 nodes and 192

bi-quadratic elements. The shading indicates the two unit cells (one interior and one exterior)



which were analyzed using global/local analysis. Obviously, there are far fewer equations

involved in the global/local analysis than in the conventional analysis nsed to obtain a reference

solution.

Results and Discussion

The errors in a global/local analysis are the cumulative result of errors at the various

stages in the procedure. To improve on a procedure requires that one know where errors are

being introduced. Accordingly, the following discussion will begin with an evaluation of the

predicted global response and finally examine errors in the predicted local stress distributions.

To help evaluate the accuracy of the global analysis, the deformation of the reference

and homogenized property meshes were compared. Figure 5 shows deformed fnite element
meshes for the three load cases. The meshes are overlaid to aid the comparison. The

inhomogeneity in the reference mesh causes local distortions which should not (and do not) occur

when homogenized properties are used. In Figure 5a (for a constant moment) the agreement

appears excellent, except for the local distortion. This apparent accuracy is an artifact of the

loading, which consisted of specified normal displacements on the left and right sides. The strain

energy (and required moment) in the homogenized property mesh is 40% too large. In Figures

5b and 5c the loading consisted of specified forces. The agreement between the meshes is fair

for these cases. Comparison of the strain energies in the reference and homogenized property

models gives a scalar measure of the agreement in the predictions. The error in strain energy

for the entire model was quite small (-6.6% for the transverse end load case and 2.6% for the

distributed lateral load case). Also shown are magnified views of one interior and one exterior

unit cell for each load case. (See Figure 4 for the location of the cells.) To expedite the

comparisons, the rigid body motion of the unit cells was subtracted before plotting. Removing

the rigid body rotation permits the unit cells to be aligned for comparison. When removing the

rigid body rotation, it is important that the linear definition of rotation (i.e. rotation - Ou Ov)
ay ax

be used. For example, consider the beam in Figure 6. The beam was subjected to a moment

at the right end. Contrary to appearances, all the unit cells have the same strain distribution.

If the rigid body rotation is removed using the linear rotation formula, the deformed meshes for

each unit cell will also be identical.

The errors in the strain energies for the individual cells are tabulated below :

Constant Moment Transverse End

Load

Distributed Lateral

Load

Interior Exterior Interior Exterior Interior Exterior

Reference 59520 415860 613764 465024 160320 68400

Homogenized 46152 599960 513120 394740 136956 66600

Error (%) -22 44 -16 -15 -15 -3

The simplicity of the loading in some cases allows one to explain the source of the errors. The

-22% error for the interior cell of a beam subjected to constant moment resulted from the



effective extensional modulus (which is what was used) being 22% smaller than tile effective

flexural modulus. For the interior cell of a beam subjected to transverse end load, there is both

flexure and shear. The shear contribution to strain energy is calculated accurately but the flexure

contribution is again low by 22%, which resulted in an net error of -16%. For the exterior cell

of a beam subjected to constant moment the dominant deformation mode is extension. There is

also some flexure. The 44% error in strain energy resulted from using the effective extensional

modulus (which is based on infinite array analysis) throughout. In reality, the extensional and
flexural modulus for exterior cells is much smaller than the effective extensional modulus for

an infinite array. These errors illustrate the problems in using effective engineering properties
for this class of materials.

As discussed in the theory section, the nodal displacements and forces were used to

determine the magnitudes of the fundamental strain and stress modes, respectively. There is

inherently some error in this approximation, regardless of the accuracy of the global analysis.

This is because in general the actual behavior cannot be matched by just the modes selected.

However, by calculating the magnitudes of the modes using the reference mesh, one obtains a

baseline approximation which is about as good as can be expected. Table 1 summarizes the

results.

For pure bending the strain modes for the interior cell are identical for the two meshes,

but this is not a sign of accuracy, since the specified displacement loading required this identity.

There was a -33% error in the constant % mode for the exterior cell. The other two non-zero

modes were exact, which again was due to the boundary conditions. The error in the stress

modes depended on the location of the cell and the particular mode. The importance of a

particular mode cannot be seen in Table 1 . The numbers in these tables are used to scale the

stress distributions from the fundamental solutions, i.e., o i = c" o_ where c" = magnitudes in the

table and 2 = stress distribution for the "_" mode. Both the c" and o7 must be considered

when determining the dominant modes for a particular load case. The dominant stress mode for

the interior cell was the gradient of a_, mode, which was off by -10%. In contrast, the dominant

mode (constant a,) for the exterior cell was off by 30%. For the transverse end load case the

o o and o for the interior cell and ° o o o o odominant modes were _, %a, %y, %a ex, e_y, e,a, %, % and %,y

0 and ofor the exterior cell. The largest errors in the dominant modes were for %a o_. These

errors tended to be quite large. For the distributed lateral load case most of the modes were

o and o modes were not significant.) The errors in the modes tended tosignificant. (The %._ or. _

be larger than for the other two load cases.

The magnitudes of the modes in Tables 1(a) and I (b) can be used to scale and superpose

displacements for the fundamental modes. These superposed displacements were determined for

interior and exterior cells. The deformed meshes are shown in Figures 7 and 8 for strain and

stress mode superposition, respectively. As was done in Figure 5, the rigid body components

were subtracted to make the comparisons of the unit cell deformations more accurate. The

thicker lines indicate the superposition results. The results labeled "Reference Superposition"

were obtained by using the reference mesh to determine the magnitudes of the modes. The

"Reference Superposition" results show that even if a global analysis is exact, the local

deformation cannot in general be represented in terms of a few fundamental modes. Regardless

of the type of loading, the interior behavior is more closely approximated than the exterior

behavior. Strain mode superposition appears to be more accurate for interior cells. In contrast,



stress mode superposition appears to be more accurate for exterior cells.

The next step was to determine the accuracy of tile calculated stresses. Three types of
solutions were examined:

1) the reference solution

2) the global/local solution in which the global analysis used the reference mesh to

determine the modal co,nponents

3) the global/local solution in which the global mesh used homogenized material

properties.

The results are presented two ways. First, just the peak stresses for each load case and analysis

type will be summarized in tabular form and then a few stress contour plots will be discussed.

The peak stresses are tabulated in Table 2. The errors in the global/local stress

calculations varied over a wide range. The simplicity of the loading for the constant moment

case eliminated one source of error.., that related to determining the average strain field using

five strain modes. The second potential source of error was in determining the local stresses

from the fundamental strain modes. This was no problem for the interior cell; the error was

essentially zero. In Reference 7 it was shown that unit cells at least one cell away from a free

surface behaved very much like ones embedded in an infinite array. Since the fundamental strain

modes (which included two bending modes) were based on infinite arrays, the accurate

prediction is no surprise. In contrast, the errors are significant for the exterior cell. Even when
the refined reference mesh was used to determine the magnitudes of the different modes, the

errors were not negligible. The stress mode superposition method tended to perform better for

exterior cells than the strain mode method. The response of an exterior cell is complex and

hence poorly represented by the particular few strain or stress modes considered. The errors due

to modal reduction increased with the complexity of the applied load. For the distributed lateral

load case the errors were significant for the interior cell and intolerable for the exterior cell.

Obviously, the interior and exterior unit cells experience different loading and different

modes are dominant for the two cells. Hence, the larger errors for the exterior cell could be

due to errors associated with particular modes, rather than the location of the cells. This was

checked in an approximate sense by adding a layer of unit cells to the top and bottom of the

current global model. Global/local analysis of this thicker beam was performed for transverse

end load case. The errors in the peak stresses for the unit cell which had been on the exterior

for the thinner model were now much less. This suggests that the behavior of an exterior ceti

is inherently more complicated than that of an interior cell.

Examination of errors in predicted peak stresses gives only a limited appreciation of the

accuracy (or inaccuracy) of the predictions. Figures 9 and 10 show stress contours for the
transverse end load case for interior and exterior cells. The contours for the interior cell (Figure

9) for the global/local analysis match very closely with the reference solution. The contours for

the exterior cell (Figure 10) are not as close, but still seem to agree fairly well, even though the

errors in the peak stresses are up to 26%. Peak stresses will probably not be useful for

predicting failure, since they occur at a point (or at least a very small region). A critical stress

criterion will probably have to consider the average stress in some characteristic volume. The

visual similarity of the contours in Figures 9 and 10 suggests that when global/local analysis is

used, the errors in a practical failure criterion ,night not be as bad as the errors in a peak stress

criterion. This visual evaluation of the similarities in the contours in Figures 9 and 10 is

subjective and could be wrong. A more objective method is badly needed.

One technique which was considered was plotting the tow area which had a stress greater



thana particular value. The reasoningis that if a large stressoccursover only an extremely
smallregion, thenthestresscalculationis suspect,sincethescaleis too closeto thatof the fiber
diameter. Figures 11and 12show resultsfor 0, for an interior andexterior cell, respectively
for thetransverseend loadcase.Two graphsareshownin eachfigure " onewhich includesthe
entire stressrange,and theother which zoomsin on thepeakstressregion. Resultsfrom the
four analysesagreequite well for the interior cell. Although the homogenizedst,perposition
techniquehasa 15percenterror in predictingthepeakstress,thedistribution is predictedfairly
well. If the failurecriteria requiresthata particularvolumebeat a critical stress,theprediction
would be in error about 15percentfor very smallcritical volumes,but theerror wouldbe less
for larger critical voh,mes. Figure 12showsanalogousrest,Its for theexterior cell. The errors
are larger than for the interior cell, but the trendis thesame,ie. for largercritical volumesthe
error in failure prediction is lessthan for very small critical volumes.

Concluding Remarks

Global/local stress analysis techniques based on the use of homogenized properties for

the global analysis were evaluated. A very stubby beam containing nine unit cells was subjected

to three types of loading. Considering the strong macroscopic stress and strain gradients relative

to the microstructure these were probably fairly severe tests. For force type loading the overall

deformation of the beam was not always predicted very well using homogenized properties. For

larger configurations with more unit cells (and hence more homogeneous microstructure) the

accuracy is expected to be considerably better. The accuracy of the calculated stresses was not

too bad for interior cells, but was poor for exterior cells. This is not surprising based on earlier

work on free boundary effects.

Regardless of how a global solution is obtained, there is considerable difficulty in using

the crude nodal force and displacement information from the global mesh to determine

appropriate load conditions for the local mesh. In this paper a modal technique was used. For

the constant moment and transverse end load cases this technique performed well. For the more

complicated case of distributed lateral load the performance was only fair for the interior cell

and poor for the exterior cell, even when a refined global mesh was used.

There are several steps (and inherent approximation at each step) in global/local analysis.

This study was just a beginning. Further work is needed in several areas. Alternatives to

homogenization, such as the macro elements in References 8 and 9 need to be evaluated. Other

techniques for imposing the global solution on a local model also need evaluation, including

additional types of fundamental modes and the use of smaller local regions. Finally, more

realistic configurations need to be identified and studied. Otherwise it is difficult to assess the

significance of the errors in the various global/local techniques for practical applications.
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Table 1 Modal magnitudes for interior and exterior unit cells from reference model and homogenized model.

(a) Strain modes

Global

Analysis

Reference

Homogenized

£0 x

O.OOE-0

O.OOE-O

Interior Cell

O.00E-O

60 6Ox 60y
60_,. 60xy EOx,y y,x

Constant Moment

O.OOE-0 1.11E-3 O.00E-O 2.22E-3

0.00E-0 0.00E-0 1.11E-3

Reference 0.00E-0 O.00E-0 -8.04E-3

Homogenized 0.00E-0 0.00E-0 -7.34E-3

9.30E-4 -3.85E-3-1.60E-4Reference

7.71E-4

5.29E-4

3.41E-4

0.00E-0 2.22E-3

Transverse End Load

0.00E-0 1.81E-3

0.OOE-0 1.28E-3

Transverse Lateral Load

6.50E-5 3.20E-4

-4.23E-3

-2.83E-3

-3.38E-3

-1,53E-3

-7.21E-4

Exterior Cell

EOxy E 0 E 0xd,, ;,'_x

O.OOE-O

0,00E+0

1.11E-3

1.11E-3

-3.56E-3 1.04E-3

-4,03E-3 0.75E-3

-1.84E-3 1.39E-4

O.OOE-O

0.00E-0

7,45E-4

3,39E-4

3.86 E-4

Homogenized -1.87E-4 8.13E-4 -3.55E-3 2.68E-4 3.60E-5 2.18E-4 -2.55E-4 -2.12E-3 1.38E-4 1.68E-4

(b) Stress modes

Interior Cell Exterior Cell

o.o o_ o_: oox,, d, o% d_,, _,,x
Global

Analysis

Reference

Homogenized

0.00E+0

O.00E+0

Reference O.00E + 0

Homogenized 0.00E+0

Reference

Homogenized

-2.33E+5

-3.91E+5

0.00E+0 0.00E+0 4.60E+7

0.00E+0 0.00E+0 4.15E+7

Ol)y,X O'OX

Constant Moment

5.33E+4 6.37E+7 -3,35E+5

0.00E+0 8.31E+7

Transverse End Load

0.OOE+O

0.00E+0 -0.08E+7

0.00E+O 4.15E+7

0.00E+0 -2.11E+7 3.21E+7 3.63E+4 5.08E+7 1.13E+5 -1.04E+7

O.00E+O -2.20E+7 1.94E+7 0.00E+0 4.74E+7 3.60E+5 -1.14E+7

Transverse Lateral Load

-1.02E+7 9.82E+6 2.99E+5 1.48E+7

-1.07E+7 7.75E+6 1.88E+5 1.39E+7

5.58E+6

4.83E+6

5.18E+6

2.93E+7

-2.67E+4

O.OOE+O

-5,61E+4

3.22E+5

1.25E+6 -5.20E+6 -1.81E+6 1.02E+5

1.56E+6 -5.78E+6 5.52E+6 1.92E+5
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Table 2 Reference peak stresses and corresponding global/local stresses (%e = percent error)

Global/Local

Analysis

Reference

Reference Sup:

Displacement Fit
Force Fit

Homogenized Sup:

Displacement Fit
Force Fit

1.22E+08

Interior Cell

Constant vloment

5.02E+07 2.53E+08

1.22E+08 0

1.22E+08 0

3.12E+07

3.12E+07 0

3.12E+07 0

1.22E+08 0 3.12E+07 0

1.10E+08 -i0 2.82E+07 -10

Reference 2.47E + 08

Reference Sup:

Displacement Fit
Force Fit

Homogenized Sup.

Displacement Fit
Force Fit

2.47E+08

2.36E+08

2.11E+08

2.17E+08

1.32E+08

1.17E+08

1.05E+08

1.O1E+08

1.05E+08

0

-5

-15

-12

-11

-21

-23

-21

Reference

Reference Sup:

Displacement Fit
Force Fit

Homogenized Sup:

Displacement Fit
Force Fit

6.10E+07

6.07E+07 -1

5.80E+07 -5

5.13E+07 -16

5.24E+07 -14

3.38E+07

3.23E+07 -4

2.92E+07 -14

2.71E+07 -20

2.94E+07 -13

5.02E+07 0 2.21E+08 -13

5.02E+07 0 2.81E+08 11

5.02E+07 0 2,40E+08 -5

4.54E+07 -i0 3,68E+08 45

Transverse End Load

-1.15E+08

-1.16E+08

-1.11E+08

-0.99E+08

-1.00E+08

3.01E+08

1 2.00E+08

-4 2.37E+08

-14 1.57E+08

-13 2.24E+08

Distributed Lateral load

-6.32E+07

-5.49E+07

-4.85E+07

-5.06E+07

-4.92E + 07

1.14E+08

-13 0.39E+08

-23 0.70E+08

-20 0.33E+08

-22 0.67E+08

-34

-21

-48

-26

-66

-39

-71

-41

Exterior Cell

cry. ] %e

5.95E+07

4,01E+07 -33

6,39E+07 8

5.66E+07 -5

8.60E+07 45

5.64E+07

4,68E+07 -17

5,96E+07 6

4.90E+07 -13

6.48E+07 15

2.21E+07

1.07E+07 -52

2.26E+07 2

1.42E+07 -36

2.06E+07 -7

9.09 E + 07

8,53E+07

9.96E+07

14.30E+07

-1.03E+08

-1.03E+08

-1.04E+08

-0.96E+08

-1.22E+08

-4.93E+07

-1.99E+07

-2.14E + 07

-2.31E+07

-2.35E+07

-6

-12

3

47

-7

18

-60

-57

-53

-52



Plain weave 5-harness satin weave

Figure 1 Examples of textile architecture.
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Abstract

Three-dimensional finite element analysis was used to sim-

ulate progressive failure of a plain weave subjected to in-plane

extension. The loading was parallel to one of the tow directions.
The effects of various characteristics of the finite element model

on predicted behaviour were examined. More numerical studies
and comparisions with experimental data are needed to establish

guidelines for accurate progressive failure prediction. Also the

sensitivity of the predictions to the tow waviness was studied. The

predicted strength decreased considerably, with increased wavi-
ness.

Introduction

Textile composites consist of interlaced fiber bundles which

are then impregnated with a matrix material and cured. Figure 1

illustrates the architecture for a plain weave composite. The inter-

lacing of the fibers offers the potential for increased through-thick-

ness strength. There is also the potential for reduced fabrication

costs, since fairly complicated shapes can be formed using textile

machinery. One disadvantage of textiles is the difficulty in predict-

ing their performance. The complex geometry makes detailed

stress analysis quite challenging. The early analyses were based

on modified laminate theory. ( eg. References 1,2) In recent years

there have been a few attempts to discretely model the fiber bundle

architecture and predict internal stress states (eg. References 3-10)

Reference 10 presented a particularly interesting progressive fail-

ure analysis of a plain weave composite. The results in Reference

10 consisted of nominal stress strain curves. The response of the

composite was almost linear for in-plane extension and highly

nonlinear for in-plane shear. The nonlinearity was primarily a

result of progressive damage. However, little information was pro-

vided on damage evolution and load redistribution within the com-

posite during the loading process. Also, there was no indication of

the sensitivity of the predictions to mesh refinement or other

approximations inherent in such analyses.

This paper has two objectives. The first is to evaluate the

sensitivity of predicted progressive failure to quadrature order,

mesh refinement, and choice of material degradation model. The

second objective is to describe the nature of the progressive failure

process for two weaves with very different waviness. Loading

consisted of a nominally uniaxial stress along one of the fiber tow

directions. Only mechanical loads were considered in this study.

To simplify the response the composite was assumed to consist of

an infinite number of unit cells in all three coordinate directions.

The following sections begin with a description of the basic

theory used for progressive damage modelling. Then the configu-

rations will be described. Finally the results from the numerical

simulations will be discussed.

Theory

There is no "fight" way to model damage evolution that is

also practical. It is not feasible to discretely model the damage, so
approximation is unavoidable. Perhaps the simplest procedure to

account for damage in a finite element model is to modify the con-

stitutive matrix at the quadrature points of a numerically inte-
grated finite element. No history effects are included, so the

analysis of the loading becomes a series of elastic analyses. Of

course, there are many possibilities for how to modify the consti-

tutive matrix. Three techniques were used herein. The first method

considered the material totally failed (ie. the entire constitutive

matrix was reduced to essentially zero) when any allowable stress

component was exceeded. This method will be refered to as the

non-selective discount method. Except as noted, this technique

was used in the analyses. The second technique selectively

reduced the rows and columns of the constitutive matrix according

to the particular stress allowable which was exceeded. The third

technique selectively reduced the engineering moduli according to



the particular stress allowable which was exceeded. The scheme

for this selective reduction was based on Reference 10.

Figure 2 gives a flowchart for the progressive failure analy-

sis. First a linear analysis was performed. Based on the calculated

stresses, the initial load was scaled back so that failure would

occur only at points which were within two percent of the maxi-

mum normalized stress. ( The stresses were normalized by the

respective strengths.) The constitutive matrix was modified at the

failure points. Residual forces were calculated and used to deter-

mine the incremental displacements required to restore equilib-

rium. The total displacements were updated and used to determine

the new stresses. If no further failures occured at the current nom-

inal strain state, the nominal strain was incremented to cause fail-

ure. This procedure was repeated until there was total failure or at

least loss of most of the original stiffness.

Configurations

The fiber bundles or tows in the models were generated by

translating a lenticular cross-section along a sinusoidal path. The
waviness ratio is defined to be the ratio of the woven mat thickness

to the wavelength. Except where indicated otherwise, the results

presented are for a waviness ratio of 1/3. More details about the

mesh geometry can be found in Reference 8. The following sub-

sections describe the finite element meshes, the boundary condi-

tions, and the material properties.

Finite Element Meshes

Symmetry in the material and loading was exploited so that

only 1/32 of a unit cell had to be modeled. A wide range of mesh

refinements were used, as shown in Figure 3. The crude mesh had

only 4 elements and 42 nodes. The most refined mesh had 192 ele-

ments and 1049 nodes.

Boundary Conditions

The periodic boundary conditions for a complete unit cell

are quite simple. The appropriate boundary conditions for a 1/32

unit cell are a bit more complicated. Derivation of the periodic

boundary conditions is somewhat tedious, so details will not be

given here. Details can be found in Reference 8. The periodic con-

ditions are listed below. Figure 3 shows the coordinate system
assumed.

u(a/2,y,z) = u0 v(x,a/2,z) = constant

u(0,y,z) =-u(0,y,-z) v(0,y,z) = v(0,y,-z)

u(x,0,z) = u(x,0,-z) v(x,0,z) =-v(x,0,-z)

w(x,y,c/2) = constant

w(0,y,z) = -w(0,y,-z)

w(x,0,z) = -w(x,0,-z)

The load was controlled by specifying the magnitude of uo.

Material Properties

The unit cell contains two "types" of materials: the tows and

the matrix pockets. Relative to the material coordinate system, the

properties of the tows are invariant (before damage occurs). Of

course, the properties of the tows are needed in the global coordi-

nate system. Fourth order tensor transformation formulas were

used to perform the required calculations. The rotation angles to

be used in these formulas were obtained at each quadrature point

by using interpolation. This procedure was shown in References 8

and 11 to be preferable to using a single angle for the entire ele-

ment. The particular properties used are listed below. These prop-
erties are from Reference 12.

Tow propertig_ Matrix properties

Modulus Strength Modulus Strength

Ell 154.27 GPa 2342.0 MPa 3.45 GPa 84.85 MPa

E22 10.80 GPa 56.6 MPa 3.45 GPa 84.85 MPa

E33 10.80 GPa 56.6 MPa 3.45 GPa 84.85 MPa

GI2 7.47 GPa 48.7 MPa 1.28 GPa 101.00 MPa

G13 7.47 GPa 48.7 MPa 1.28 GPa 101.00 MPa

G23 3.33 GPa 48.7 MPa 1.28 GPa 101.00 MPa

vt2 0.278 0.35

v13 0.278 0.35

v23 0.340 0.35

Results and Discussions

Most of the results in this paper illustrate the effects of char-

acteristics of the finite element model on the progressive failure

prediction. The effects of quadrature order, mesh refinement, and

material degradation strategy will be considered first. Then the

effect of tow waviness on failure behaviour will be discussed.

Figure 4 shows the effect of quadrature order on the stress-

strain curve. The peak stress obtained using 8 quadrature points

(2x2x2), is 10 percent higher than that obtained using 27 or 64

points. Although the peak stress is the same for 27 and 64 points,

damage is predicted earlier when 64 point integration is used. This

sensitivity is not particularly surprising for at least two reasons.

First, when more quadrature points are osed, the more extensive

sampling is more likely to find the extremes in the stress field.

Second, when failure occurs within an element and the constitu-

tive matrix is modified, the element becomes inhomogeneous. The

numerical integration effectively fits a polynomial function to the

variation of material properties. Since the properties are very dif-

ferent in the failed and unfailed parts of the element, it is difficult

to obtain a good fit. In fact, there is concern as to whether the

assumed quadratic displacement functions for a 20-node element

are sufficient to obtain a reasonable approximation regardless of

the integration order.

Figure 5 shows the effect of mesh refinement on the predicted
stress-strain curve for two waviness ratios. The 4 element model

predicts the correct trends, but is quite inaccurate. The error is

much worse for the larger waviness ratio. For the 1/6 waviness

ratio, the 32 and 192 element models agree quite well. There is



considerabledifferencebetweenthe32and192elementmodels
forthe1/3wavinessratio.Althoughtheresponseisquitebriule
forbothwavinessratios,thereismorenon-catastrophicdamage
beforecollapseforthelargerwavinessratio.

Figure6showstheeffectofthediscountfactoronthestress-
straincurve.Thestiffnesstermsatfailedquadraturepointswere
reducedtoeither.01or.0001oftheoriginalvalues.Intuitively,
onemightexpecttoobtainthesameresult.Figure6showsthat
therewasnodifferenceinthepeakstress,buttheresponsewas
verydifferentwhenthereisconsiderabledamage.

Figure7showsthestress-straincurvesobtainedusingnon-
selectivediscountmethod,selectivereductionofrowsandcol-
umnsintheconstitutivematrix(thestiffnessterms,notthecom-
plianceterms),andtheselectivemethoddescribedinReference
10.TheselectivemethoddescribedinReference10predicts
abouta21percenthigherpeakstressthanthenon-selectivedis-
countmethod.

Figures8and9showtheeffectofmeshrefinementandwav-
inessratioondamageaccumulationduringloading.Theblack
regionindicatesthedamagezone.Thestress-straincurvefora
particularmeshisshownabovetheresultsforthatmesh.The
pointslabeledA,B,andCindicatethecorrespondencebetween
thestrainlevelandthedamagecontours.Alsoindicatedarethe
stresscomponentswhichcontributedtothedamagecontour.The4
elementmeshdoesnotperformwellatallforthewavinessratioof
1/3,butdoesalittlebetterforthe1/6waviness.The32element
meshperformsreasonablywellforobtainingqualitativeresults.
Furthernumericalstudiesareneededtodeterminehowclosethe
192elementmeshistoconvergence.Forthe1/3wavinessratiothe
t_33 stress component dominates the damage development up to

the point shown. For the 1/6 waviness ratio t_33 plays a part, but

there is also significant cracking of the 90 degree tow due to (_22"

Reference 6 had also noted a change in initial damage mode with
waviness ratio.

Concluding Remarks

Simulation of progressive failure in a plain weave compos-

ite is extremely complex. Consequently, only approximate treat-

ment is practical at this time. One of the goals of this paper was to

examine the effect of several approximations on predicted behav-

iour. The one obvious conclusion from this study is that the pre-

dictions are quite sensitive to a number of decisions which must be

made when assembling a finite element model. Further numerical

experiments and comparisons with experimental data are needed

to establish guidelines for accurate analysis of progressive failure.

Another objective of this paper was to describe the effect of tow

waviness on damage accumulation. The results suggest that the

degree of waviness not only affects the stress at which damage ini-

tiates, but also the type of damage which occurs.
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(a) A full unit cell.

(b) A single mat with matrix pockets removed.

Figure 1 Schematic of Plain Weave composite.
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Figure 2 Flowchart of progressive failure analysis.
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Part II Software Documentation

Part II documents the software developed as part of this research project. There are three

programs to be documented: a finite element mesh generator named "PWMeshGen", a finite ele-

ment program named "Flex94", and a visualization tool named "Plot94". They will be discussed
in this order. The final section in Part II describes the installation of the software.



PWMeshGen



User's Manual for PWMeshGen

(Plain Weave Mesh Generator)

A collection of Fortran and C programs were developed to expedite the generation of finite
element meshes for plain weave composites. These programs are currently intended to be run
under the UNIX operating system. However, only a few changes are required for other operating
systems.

The tow path of the plain weave is assumed to be sinusoidal. The user can select between
translated and extruded tows (see Ref. 1). Although several programs are required to generate a
mesh, an executive program has been provided which orchestrates the transfer of data from one
program to the next. Hence, the collection of programs appears to the user to be a single program.
The executive is named PWMeshGen.

To simplify program operation, the input file is a form. This form contains labels which
remind the user of the required data and order of the data. To obtain a copy of the form, simply
execute the program "PWForm" with the command line parameter "filename", which will be the
name of the generated form. For example, executing the command

PWForm inFile

will generate a file named <inFile>, which is shown in Figure 1. Figure 2 shows a typical finite
element mesh with labels which define the terms in the generated form.

When this file is edited, it is critical than none of the form labels be changed, since the
labels are used to guide input. Once the form is complete the mesh is generated by executing the
command

PWMeshGen inFile

The programs will generate several files, which will be discussed in the next section. Sample data

in the sub-directories "Sample3" and "Sample4" on the distribution media include completed
forms. The file names for these forms are Samples/Sample3/Input/meshl and Samples/Sample4/
Input/mesh2.

Warning

Early in the mesh generation process there are duplicate node numbers. One of the tools

removes the duplicate node numbers. This tool uses a tolerance to determine whether two points

are coincident. This tolerance is hardwired to be .00001. It can be changed by editing the file

MeshClass.C in PWMeshGen/MeshToolSource. Line 140 is

#define EPSILON le-5

To change the tolerance, simply change this value and recompile.

Output Files:

Several output files are generated. These files are for use with the finite element program
Flex94. The following files are generated during a typical execution:



i ,

File

new.flex
new.sflx
new.as
new.am

mat_list
new.fix

xExtension.mpc
xyShear.mpc
xzShear.mpc

ExtSingleConstraints
xyS hearConstraints
xzS hearConstraints

xExtension.Loads

xyShear.Loads
xzShear.Loads

eighth.fix

eighth.am

eighth.as

Description

Main input file for Flex94.
Mesh file for Flex94.

Element rotation angle file: single angle.
Element rotation angle file: multiple angle.
A material list of the elements.

A simple mesh file used for plotting the mesh
and determining boundary conditions automatically.

Multipoint constraints for extension in the x direction.
Multipoint constraints for in-plane shearing.
Multipoint constraints for transverse shearing.

Constraints for extension.

Constraints for in-plane shearing.
Constraints for transverse sheafing.

Loads for extension in the x-direction.

Loads for in-plane shearing.
Loads for transverse sheafing.

A simple mesh file for plotting the 1/8th unit cell.

Element rotation angle file for 1/8th unit cell:
multiple angle.

Element rotation angle file for 1/8th unit cell:
single angle.

References:

o Chapman, C. 1993. Effects of assumed tow architecture on the predicted moduli and
stresses in woven composites, Master thesis, Department of Aerospace Engineering, Texas
A&M University.



Input File for Mesh Generation Program

Thickness of mat:

Waviness ratio:

Tow type:
Tow elements in z-direction:

Primary elements in y-direction:
Resin elements above and below tows:

Execution flow flags: Type yes beside functions to be performed.
Generate 1/8 unit cell:

Renumber nodes to reduce profile of stiffness matrix:

Notes

Tow type: i=> extruded

2=> translated

**************End of Input File For Mesh Generator****************

Figure 1: Form used to define input for mesh generator.



X

1 Resin Element

above and below
tows

2 Tow Element s
in z-direction

4 Primary Elements

in y-direction

Figure 2: 1/8th unit cell created with PWMeshGen.



Appendix A: Use of output files with Flex94

The files generated using PWMeshGen are used in conjunction with the finite element

program Flex94 and the mesh plotting program Plot94. The file new.flex is the main input file for

Flex94. An example of this file is shown in Figure A1. This example specifies that the mesh

new.sflx will be subjected to extension in the x-direction as indicated by lines 6, 26, and 29. Mod-

ifications for other load cases are given below:

For in-plane shear, these lines would need to be changed as follows:

6 'xyShearConstraints'

26 'xyShear.mpc'

29 'xyShear.Loads'

For transverse shearing, these lines would need to be changed to:

6 'xzShearConstraints'

26 'xzShear.mpc'
29 'xzShear.Loads'

And finally, for extension in the z direction, the lines would be:

6

26

29

'ExtSingleConstraints'

'zExtension.mpc'
' zExtension.Loads'

Note that ExtSingleConstraints is also used for extension in the x-direction.



1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

43

Title Here'

alternate_input'

new.sflx'

alternate_input'

ExtSingleConstraints'

end_mesh_input'

3d'

1

206.9e9 5.171e9 5.171e9 .25 .25 .25 2.386e9 2.386e9 2.386e9 0 0 0 0 0 0 0

2

5.171e9 206.9e9 5.171d9 .00625 .25 .25 2.386e9 2.386e9 2.386e9 0 0 0 0 0

00

3

3.45e9 3.45e9 3.45e9 .35 .35 .35 1.28e9 1.28e9 1.28e9 0 0 0 0 0 0 0

0 'end:T300/5208'

'end_material_input'

'loop'

iiii

2221

3341

0000

end_pick'

alternate_input'

new.am'

alternate_input'

xExtension.mpc'

end of misc_options'

alternate_input'

'xExtension. Loads'

'end loads'

'end'

Figure A 1: Typical new.flex file generated with PWMeshGen.
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FLEX94

User's Manual

Command: fe size

Comments: size = maximum number of terms in global stiffness matrix. If size is omitted, a

default size is assigned by the program. The default size is 1500000.

The analysis of an infinite array of unit cells only requires a single mesh. Such analysis is

useful for determining homogenized engineering properties and stress (or strain concentrations).

Such analysis proceeds much like traditional finite element analyses except that the boundary

conditions are fairly complicated. Utilities have been developed to automatically generate the re-

quired boundary conditions for various load conditions.

Global/local techniques were developed as part of this research project. There are many

possible global/local methods. The ones evaluated used macro elements (Refs. 1-3) in the global

mesh and ordinary finite elements in the local mesh. Two types of macro elements are supported:

single field ( Refs 1, 2) and multi-field (Refs 3). After a global analysis is performed using macro

elements, the detailed stress distributions within a weave unit cell are determined using displace-

ments or forces from the global analysis to determine the boundary conditions for the local mod-

els, which include details of the weave architecture. The global/local analysis software was not

sufficiently automated to release it as part of this software. However, the macro elements are in-

cluded in the finite element program. Reference 4 discusses one of the more promising proce-
dures evaluated.

The input file for Flex94 can be broken into several blocks which must appear in the fol-

lowing order:

1. Mesh Input

2. Material Properties

3. Macro Element Input (Optional)

4. Miscellaneous Options

5. Loads

6. Macro Element Data

7. Failure Analysis

A description of each block is given in the following sections with an example.



'analysis_type'
'LINEAR'

'end_options'

43 2
'Small Mesh'

'alternate input'
'smLmsh '

'standard_input'

'coordinates'
102 2
1 -1.5 -1.5
2 -1.5 -1.3
3 -1.3 -1.5
4 -1.1 -1.5

.°o

101 1.5 1.3
102 1.5 1.5

'connectivity'
1 4 1 234
2 4 2336
3 4 4876

42 4 97 95 99100
43 4 1009999101

'define_element_type'
243 1 43 1

0000

1. Mesh Input

This option allows the user to define the analysis type.
'LINEAR' selects linear analysis. This has to be replaced
by 'SELECT' for Selective discount method or by 'NSELECT'

for Non-Selective discount method.
NumberOfElements DegreesOfFreedomPerNode
Title - Must be in single quotes.

This option allows user to put mesh in another file. Filename must
be on the following line. At end of file 'sml.msh', 'standard_input'
should be used to return to original file. 'alternate_input' can only
be used in the original Flex94 input file (eg. you could not use the
command in 'sml.msh')

If 'alternate_input' was used, 'standard_input' would return input to the
original input file. 'standard_input' can only occur where a command is
appropriate. For example, it could not appear in the middle of reading
coordinates.

Command to signal start of coordinates.
NumberOfNodes Nu mberOfCoordinateDimensions
NodeNumber Coordinates

Command to signal start of connectivity.
Element# NumberOfNodeslnElement Connectivity
Connectivity must be specified in clockwise order for 2D elements. For
20-node 3D elements, the order of the nodes is shown in Figure 1.

Command to start element type definition.
ElementType FirstElement LastElement Increment (In this case, ele-

ments 1 throught 43 are of type 243).
End with four zeroes. The relevant element types are listed below:
243 2D element
300 3D element
851-899 single field
801-849 multi-field



'select_quadrature_order'
21431
0000

'single_constraints'
401 0
4111
1801
102 1 1
1000 1
101 1 0
0 0 0

Commandtostartselectionofquadratureorderforeachelement.
QuadratureOrderFirstElementLastElementIncrement
Endwithfourzeros.Toobtainstresses,a quadratureorderof

2for2D and3for3Dhasto beused.

Commandtosetsingleconstraintsonindividualnodes.
NodeToConstrainConstraintDoflConstraintDof2...
1==ConstrainDof
0==Don'tConstrainDof
Note:Thenumberofconstraintsat eachnodemustbeequaltothe

numberof Dofpernodewhichwassetatthebeginningofthe
meshblock.Exampleshownis for2 Dofpernode.

Endwithzeros.

'plane'
1 -1.5 1
1 -1.5 2
2 -1.5 2
2 -1.51
000

'end_mesh_input'

Commandtosetconstraintsona plane.
idir coord jcon

idir= directionof normalto planein(xl ,x2,x3)space
coord= coordinateofplane
jcon= restraintdirection

endwithzeros

exitthisinputsection

2. Material properties

This section defines the material library and which elements have which material proper-

ties. Flex94 was designed to handle various types of constitutive definitions (eg. 2D, 3D, proper-

ties for a beam, etc.) However, for textile analysis only one option is relevant - '3D'. This option

requires the 3D elastic properties to be given as shown below. For 2D analysis the 3D properties

which are input are used to determine the 2D properties for plane strain analysis.

gxamlat 
'3D'
1
206.9e9 5.171e9 5.171 e9
.25.25.25
2.386e9 2.386e9 2.386e9
0
000
000

2
5.171e9206.9e95.171e9
.00625.25.25
2.386e9 2.386e9 2.386e9
0000000
3
3.45e93.45e93.45e9
.35.35.35

Command to start reading of 3D material properties.
Material group number used later in assigning properties to elements.
Young'sModuli (Ell E22 E33)
Poisson's Ratios (v12 v13 v23)
Shear Moduli (G12 G13 G23)
Rotation about z-axis (z-axis is out of plane for 2D problems)
(thermal expansion coefficients...not used or implemented)
(moisture expansion coefficients...not used or implemented)

Next material group



1.28e91.28e91.28e9
0000000
0
'end_material_input'
'loop'
31431
12434
13434
0000
'end_pick'

Givezeroasmaterial group number to end input.
End input of material properties
Command to start specifing material group.
MaterialGroupNumber FirstElement LastElement

End with zeroes

End selection of material properties for elements

Increment

Comments: For a mesh consisting of macro elements only, there is no need to input material

properties. (It will do no harm, but the data will not be used.) Hence, the following lines are suf-

ficient for the material property section.

'end_material_input'
'end_pick'

3. Macro Element Input

Most of the data for macro elements will be specified in another file, as described shortly.

The following must be included in the main input file if macro elements are being used.

'read_macro_mesh'
851

103 95 2
2
2500 500

Command to start reading of macro element mesh.
macro element type 851-899: single field

801-849: multi-field
NumberOfNodes NumberOfElements NumberOfDimensions
NumberOfDofPerNode
length of connectivity array length of coordinate array
Minimum requirements are:
Connectivity: numberOfElements * (numberOfNodesPerElement + 9)+1
Coordinates: numberOfNodes * numberOfDimensions + 2

12
2
'title'

'alternate_input'
'name'

number of elements in macro element submesh
number of degrees of freedom per node in macro element submesh

name of alternate input file

(what is in this file will be described in section "6")

Repeat above commands of section 3 for each type of macro element
to be used.



'initmacro'
2
1 2

NumberOfMacroElementTypes
List of elements which need to be initialized

4. Miscellaneous Options

Element Material Rotation Angle: For the analysis of textile composites, the material proper-

ties of the elements making up the tow are the same in the material coordinate system. These

properties must be transformed to the global coordinate system. Flex94 allows the user to specify

the angular orientation of the elements. For 2D, the user can specify the angle of rotation for an

entire element only. For 3D, however, Flex94 also allows the user to specify the angle of rotation

for each node in an element. The angle of rotation may be specified using three different com-

mands: 'angles2d', 'angles3d', and 'angles_multiple'. The angles are specified in terms of de-

grees.

Example:

'angles2d'
1 0.00
2 5.17892
3 10.28684
4 15.34983
°.°

42 -5.17892
43 0.000

Description;

Command allows the user to specify the angles for a 2d analysis. When
using this option, angles specify the rotation about the z-axis.
(Out of plane.) Angles must be specified for all elements in the
mesh and are positive for a clock-wise rotation.

ElementNumber RotationAboutZAxis

Example:

'angles3d'
1 1 0.00
2 2 5.857
3 3 6.449
.,,

42 1 0.00
43 2 2.48

'angles_mu Itiple'
1 220
6.724670
7.294361

4.009413
0.000000
21 20

Description;

Command allows the user to specify the angle and axis of rotation for 3D
analysis. Again, the angles must be specified for all elements.

ElementNumber AxisOfRotation Angle

Command allows the user to specify the angles of rotation for 3d.
ElementNumber AxisOfRotation NumberOfAnglesForElement
Angle(l)
Angle(2)

Angle(19)
Angle(20)

Angle(n) corresponds to the rotation at the nth node specified



5.877652
2.332992
°.,

42 1 20 0.000 0.000 0....
43 2 20 2.489 2.476 2.4...

in the connectivity of the element.

It is often more convienient, when specifing the material rotation angles for elements, to

use 'alternalte_input' to allow the angles to be kept in another file. When doing this, remember to

put 'standard_input' at the end of the file to let Flex94 return to the original input file.

Multipoint Constraints: Another miscellaneous option which Flex94 allows, is the specification

of multipoint constraints. When specifying multipoint constraints, the user must specify a master

node, slave node, the particular degree of freedom (dof) to constrain, and a difference between the

two dof's. The particular dof being constrained (ie. the slave node) cannot have been previously
constrained.

It is also possible to apply a mpc such that the displacement of the slave node dof is the

opposite that of the master node dof. This is done by putting a minus sign in front of the master

node as shown in the following example.

'mpc'
2 1 1 0.000
3 1 1 0.000
4 -1 2 0.150
100 -1 1 0.000
101 100 1 0.000
102 -1 2 0.150
0000

Command to start reading of multipoint constraints.
SlaveNode MasterNode DofToConstrain Difference

This line constrains Node 4 dof 2 to the negative displacement of Node
1 dof 2 plus a difference of 0.150

Use four zeros to signal end of multipoint constraints.

Ending Miscellaneous Options: This command must appear at the end of the Miscellaneaous

Options section. It is shown below.

'end of misc_options' Command to end Miscellaneous Options. (NOT OPTIONAL!)

As stated earlier, it may be more convienient to keep sections of miscellaneous options in

another file. This can be done using 'alternate_input' with 'standard input' as explained in sec-
tion 1.

5. Loads

Various types of loads can be applied with Flex94. Some of these include the specification

of nodal displacements and point forces. All the command options in this section are optional.



'alternate_input'maybeusedat anytime wherea commandcanbeaccepted.Rememberto re-
turn to theoriginal input file with 'standard_input'.

Point Forces: Point forcesallow theuserto specifythenodalforceat anode.

F.xamp 
'point'
l le7 1
3 2.345e6 2

o.o

87 6.456e8 1

000

Command to start reading of point forces.
NodeNumber Force DofNumberForNode

End reading of point forces with three zeros.

Displacements: Displacements may also be specified at specific degrees of freedom. In the input

of the mesh in section 1, constraints can be input. This reduces the actual size of the problem.

Specified non-zero displacements are also a type of constraint, but in order to reduce the problem

size, the dof must be constrained in the mesh section also.

F.zamp 
'displacement'
1 3.13e-3 2
1 .025 1
2 0.56e-2 2
87 0.13e-2 1
102 0.13e-2 1
000

Command to start reading of displacements.
NodeNumber Displacement DofNumberForNode

End reading of displacements with three zeros.

Plane Displacements: Displacements may be applied to an entire plane in a particular direction.

This is known as a plane displacement. This option works in conjunction with setting plane con-

straints in the mesh input section.

F.zamp 
'planeDisplacement'
1 -1.5 .015 2
1 -1.5 .010 1
2 -2.0 -.013 2
0000

Command to start reading of base displacements.
CoordinateNumber CoordinateValue Displacement Direction
<---This line indicates that on the plane x=-1.5 specify a displacement of

0.010 in the x-direction.

End reading of base displacements with four zeros.

Linearly Varying Displacements on a Plane: Displacements may be applied to an entire plane

so that the variation of the specified displacements changes linearly with the value of the coordi-

nates which are parallel to the plane. For example, one may want to specify an x displacement on

a plane x=l.5 which varies linearly with y. Displacements are calculated as d i = a Yi + b where a

and b are specified by the user and d i and Yi are the calculated displacement and y coordinate at a

specific node on the x=l.5 plane.



'linearPlane Displacement'
1 1.5 1 2 .1 -.05
2 -1.5 1 1 .01 -.01

°..

000000

Command to start reading of linearly varying plane displacements.
This line specifies that on the plane xl =1.5, a displacement in the x 1

direction given by d i -- .1 X2i - .05 is being specified at each
node i on the plane.

End reading of linearly varying plane displacements with six zeros.

To end reading of loads, 'end_loads' must be at the end of the loads section.

6. Seperate Input File For Macro Element Data

Much of this file is identical to the sections described above. Hence, references will be made to

the sections above rather than repeating all of the details.

Mesh input block ....... refer to Section 1:

Comments:

1. Do not input any restraint information.

2. The nodal coordinates must be normaized coordinates (eg. they must range

between-1 and 1.)

Material properties block ....... refer to Section 2:

numberOfNodesInMacroElement: The number of nodes in the macro element must be

specified. It is not the number of nodes in the submesh.

Miscellaneous options block ....... refer to Section 4:

Comments:

1. The material rotation angles for the elements in the submesh is input in this

section.

2. Do not apply multipoint constraints to a macro element mesh.

7. Failure Analysis

This section describes the data required for progressive failure analysis.

As described in 'Mesh Input ..... section 1,' the analysis type 'LINEAR' has to be replaced with

either 'SELECT' or 'NSELECT' option. The option 'SELECT' represents the 'selective discount

method' and 'NSELECT' represents the 'Non-Selective discount method.' One additional input

file is required. It is named 'strengthdata'. It contains a list of strength values for each of the

material groups used.



3
500 50 50 60 60 60
-500 -50 -50

NumberOfMaterialGroups
(tensile strength) o'11,o'22,_33,(shear strength) O'12,(_ 13,13"23,

(compressive strength)O'l 1,O22,033

When progressive failure analysis is performed, the following additional files are created.

'stressstrain' : Data file used to plot 'nominal stress vs nominal strain' curve.

1 0.0e6 0.00

2 1.3e6 0.10
ReferenceNumber, NominalStressValue,

NominalStrainValue (percent)

'damagefield': Damage progression sequence is recorded. This file may be used to study the fail-

ure mechanism and used for graphical simulation of failure progression.

f.aamlatm

11
001043
000000
650000

ElementNumber, MaterialGroupNumber
Each row represents an integration point of the element. Each column
represents a stress component. (3"11,O'22,(_33,(112,(113,O'23 is the order
the stress components for each row. The numbers 1,4, and 3

correspond to the first, fourth and third points on the stress-strain curve.

21
870000
.,.

'fcontour.n' = 1,2,..., number of points on the stress-strain curve : This filen

contains the contour data required to plot failure contours for each point on the stress-strain curve.

The file format is the same as the stress contours file 'stress'.
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Plot94

User's Manual

Executable: Mesh.app (double click to start)

The program Mesh.app was used in debugging finite element meshes and postprocessing the

results from finite element analyses. The program was developed for the NeXTStep operating

system, which is available for Intel personal computers and Hewlett Packard workstations. It is

assumed that the user of this program is familiar with NextStep.

The primary functions of the plotting program are:
1. Plot a finite element mesh.

2. Plot a deformed finite element mesh (ie. with scaled nodal displacements added to

original nodal coordinates.)
3. Plot stress contour lines.

4. Plot stress contour bands.

This program was designed to work with the finite element program "Flex94". In brief, the

current version of the plotting program supports the following:

Mesh plotting for the following elements

truss

frame

triangular and quadrilateral 2D elements with any number of nodes
20-node hexahedral elements

Contour plotting for the following elements

4 and 8 node quadrilateral elements

20-node hexagonal elements

The following pages describe the use of Plot94. There are two aspects to using the program:

preparation of the input files and interaction with the graphical user interface to obtain the type of

plot desired. This manual will begin with a discussion of the input files followed by a description

of the graphical user interface (GUI).



Input Files

This section describes the following types of input files:
1. Mesh file

2. Nodal displacement file
3. Contour data file

In each case a fragment of a typical input file will be listed and explained. The actual input data is

in small type and the comments are in italics.

Mesh file:
1941 384 3

1 -.75000 -.65625

2 -.65625 -.75000

3 -.75000 -.75000

4 -.75000 -.65625

5 -.75000 -.75000

6 -.65625 -.75OOO

...

120341

2 2031 32

3 2011 12

4 2035 36

5 2051 52

..°

-.5000

-.5000

-.5000

-.4951

-.3750

-.4951

numberOfNodes numberOfElements numberOfDimensions
node# coordinates (for 2D only xy coordinates are needed.)

element# numberOfNodesPerElement
1 13 35 32 31 5 6 14 38 34 23 24 27 29 43 40 39 25

35 37 112 110 108 33 34 38 111 107 39 40 43 45 120 118 116 41

5 53 63 36 35 13 14 54 66 38 27 28 59 61 66 44 43 29

63 65 124 114 112 37 38 66 123 111 43 44 67 69 128 122 12 45

147 149 159 64 63 53 54 150 ...

connectivity

Optional input for mesh file:

world

0.00 0.00

1.500 1.500

inactive

1641

129 384 1

000

active

24 32 1

000

set.colors

5 1 32 1

°..

°..

0000

elementNodalValues

set.values

32

1 2.334 4.566 1.13e9

22.567 4.877 1.15e9

input range of screen coordinate system
lowerLeftX lowerLeftY
upperRightX upperRightY

(if left out, program will automatically pick coordinates)

deactivate elements ( elements will not be plotted)
first last increment
next group to deactivate
end option with three zeros

activate elements

Set Element Colors

colorlndex first last increment
(0<= colorlndex<12)

colorlndex corresponds to material group number
end with four zeros

input contour data (see format in Contour Data File Section)

Sets values for each element. Use Shade Elements to view.
numberOfColumnsOfData selectedColumn
total # of columns = numberOfColumnsOfData+ l

If selectedColumn<O, absolute value of data is input.

Range is selected automatically.



fix.values

32

0 10.5

1 2.334 4.566 1.13e9

2 2.567 4.877 1.15e9

°°•

Fix Values for each element. Use Shade Elements to view.

numberOfColumnsOfData selectedColumn

minValue maxValue

If selectedColumn<O, absolute value of data is input

Nodal displacement file:
1 -.79272E-24 .13041E-02-.42810E-22 nodeNum (u,v,[w]) displacement

2 .87106E-02 -.97213E-24 -.43845E-22 (w displacement is optional in 2D)
3 -. 12200E-22 -.24332E-23 . 10482E-22
4 .37197E-22 .11482E -02 -.30051 E-02

5 .42536E-22 .13039E-22-.23021E-01

6 .83812E-02 .11663E-22 -.36294E-02

7 .19218E-24 .54321 E-02 .13092E-22

8 .15420E-23 .10875E-01 -.12807E-22

9 -.14467E-23 .45672E-02 -.52301E-02

10 .11192E-01 .63668E-02 -.49632E-22

Contour data file:

This section may be included in the mesh file or as a stand alone file. To include this in the mesh

file, the option elementNodalValues must be used.

(elementNodalValues)
3

1

fixed

-4e7 4e7

1 1

•1807296E+08 -.3453916E+06 -.5935107E+08

•1881153E+08 •2379351E+07 -.5971771E+08

•••

Only include if in the mesh file.
Number of columns

Column to be input

(These 2 lines explained in Scaling options.)

elementNumber materialGroupNumber

There is one line of data for each node in each element.

Scaling Options:

A scaling option must be given when the data is read in so that the plotting program will know

how to draw contours. The above data uses the fixed option which allows the user to specify the

minimum value (-4e7 in the above data) and maximum values (4e7) when the data is read in. It is

also possible to specify that the program automatically pick the minimum and maximum values

when reading in the data. There are several options for doing this. These are auto, group, and
active.

- auto tells the program to automatically pick the min. and max. from all of the input data.

There is no extra data necessary for this command.

- group allows the user to specify that min. and max. value be picked from a specific

material group. On the next line, the material group number to scale must be specified.

- active allows the program to pick the min. and max. value from all the active elements.

No extra data is required for this option.

It is also possible to scale the data after it is read in by changing the Data Range fields in the

bottom right hand corner of the primary panel. However, the data being read in must still have

one of the scaling options specified in the file.



Interface

One part of the interface is the primary panel, which includes the plotting window, a collection of

buttons, toggle switches, and text fields (see Figure 1). The operation of each is documented

below. Figure 2 shows the menu panels. The one labeled "Mesh" is the main panel. The others

are activated through the "Mesh" panel as indicated by the lines joining the panels. The menus

are self-explanatory except for the one labeled "Modify List of Elements to be Plotted". This

panel permits one to remove a collection of elements or to add them back. There are three meth-

ods provided for identifying the particular elements. These are described below:

1. Modify by Volume: Select elements whose centroids lie within the specified xyz coordi-

nate ranges.

2. Modify by Group Number: Select elements in the specifed group.

3. Modify by Loop List: Select elements "First" to "Last" with an "Increment" or stride. For

example, if First, Last, and Increment are 1,10,2, respectively, then the selected elements will be

1,3,5,7,9.

Description of Buttons, Toggles, and Text Fields on Primary Panel:

Redraw

Zoom In

Zoom Out

Node Numbers

Element Numbers

Shade Elements

Label Intensity

FontScale

World Coordinates

Rotation

Redraw mesh using current settings.

Zoom in on center portion of plot (magnification = 4x).

Zoom out (reduction = 4x).

Label nodes.

Label elements.

Color element according to the specified color group.

Label element according to the specified material group.

Magnification factor for default font size.

Range of world coordinates in plotting window.

Rotation about z,x, and y axes - in that order followed by incremental

rotaion about the z axis. When all angles =0, the z-axis points to the

top of the window and the y-axis points to the right side. A right-

handed coordinate system is used.



Magnification

Use Displacements

A uto World

To PostScript File

Monochrome�Color

Contouring
Draw Contours

Label Contours

Lines

Bands

Outline Elements

Data Range
Min

Max

Magnification factor to apply to the nodal displacements.

Click on to plot deformed mesh. Displacements are read in using the

menu option Displacements under Document.

Allows program to automatically specify world coordinates for
window based on size of mesh.

Click on to create PostScript file rather than draw to screen. This

function creates a much smaller file than saving with the default print

command. Greyscale is always output. By changing one parameter

in file, it can be converted to color. (Directions are included in the

PostScript file.)

Toggles display between color and greyscale.

(All options take effect on next Redraw.)
Click on to draw contours.

Click on to label contour lines if just Lines selected or draw legend if
Bands are selected.

Click on to draw contour lines.

Click on to draw contour bands.

Click on to draw element bondaries when contouring. Element

boundaries are always drawn when contouring is turned off.

Lower limit for contour data.

Upper limit for contour data.



Figure 1: Primary panel including the plot window.
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Figure 2: Menu panels with connections.



Installation



Installation of Source Code and Samples

The PC DOS formatted distribution media contains the following four compressed tar files:

pwmeshge.z
flex94.z

plot94.z

samples.z

After copying these files to a UNIX computer, these files must be renamed as

pwmeshge.Z
flex94.Z

plot94.Z

samples.Z

The files can then be uncompressed using the command

uncompress *

Next the files in each tar file are extracted using the commands

tar-xvf pwmeshge
tar -xvf flex94

tar -xvf plot94

tar -xvf samples

The following four sub-directories are created in the current directory:

PWMeshGen

Flex94

Plot94

Samples

Creation of Executables

Change to the directory containing the four sub-directories listed above, then execute the

following commands. The words in italics are comments, not commands.

cd Flex94/Control

make

The executable is named "fe" and is located in the current directory. It may be moved to

any location desired.
cd..



cd PWMeshGen
follow the instructions in the file "'readme"
make

The executable is named "PWMeshGen" and is located in the directory one level above

the current directory. The executable should not be moved.

cd..

cd Plot94

make

This plotting software only compiles and runs on systems running NextStep

Sample Input

Input and output files for six problems are included. These are in the subdirectories Sam-

plel - Sample6. Comments are included in the subdirectories which describe each sample.


